Spontaneous intra-electron transfer within rGO@Fe2O3-MnO catalyst promotes long-term NOx reduction at ambient conditions

Abstract
Iron (Fe)-based catalysts are widely used for taming nitrogen oxides (NOx) containing flue gas, but the regeneration and long-term reusability remains a concern. The reusability can be acquired by external additives, and resultantly can not only increase the cost but can also add to process complexity as well as secondary pollutants. Herein, a self-sustainable material is designed to regenerate the catalyst for long-term reusability without adding to process complexity. The catalyst is based on reduced graphene-oxide impregnated by Fe2O3-MnO (rGO@Fe2O3-MnO; G-F-M) for spontaneous intra electron (e-)-transfer from Mn to Fe. The developed catalyst; G-M-F exhibited 93.7% NOx reduction, which suggests its high catalytic activity. The morphological and structure characterizations confirmed the Fe/Mn loading, contributing to e--transfer between Mn and Fe due to its conductivity. The synthesized G-F-M showed higher NOx reduction about 2.5 folds, than rGO@Fe2O3 (G-FeO) and rGO@MnOx (G-MnOx). The performance of G-M-F without and with an electrochemical system was also compared, and the difference was only 5%, which is an evidence of the spontaneous e- transfer between the Mn and Fe-NOx complex. The designed catalyst can be used for a long time without external assistance, and its efficiency was not affected significantly (<3.7%) in the presence of high oxygen contents (8%). The as-prepared G-M-F catalyst has great potential for executing a dual role NOx removal and self-regeneration of catalyst (SRC), promoting a sustainable remediation approach for large-scale applications.

Citation
Sharif, H. M. A., Asif, M. B., Wang, Y., Hou, Y.-N., Yang, B., Xiao, X., & Li, C. (2023). Spontaneous intra-electron transfer within rGO@Fe2O3-MnO catalyst promotes long-term NOx reduction at ambient conditions. Journal of Hazardous Materials, 441, 129951. https://doi.org/10.1016/j.jhazmat.2022.129951

Acknowledgements
This study was supported by the National Natural Science Foundation of China (Grant Nos. 22050410268, 51708356, 52070042).

Publisher
Elsevier BV

Journal
Journal of hazardous materials

DOI
10.1016/j.jhazmat.2022.129951
10.2139/ssrn.4148121

PubMed ID
36115094

Additional Links
https://linkinghub.elsevier.com/retrieve/pii/S0304389422017459

Permanent link to this record