Spontaneous intra-electron transfer within rGO@Fe2O3-MnO catalyst promotes long-term NOx reduction at ambient conditions

Iron (Fe)-based catalysts are widely used for taming nitrogen oxides (NOx) containing flue gas, but the regeneration and long-term reusability remains a concern. The reusability can be acquired by external additives, and resultantly can not only increase the cost but can also add to process complexity as well as secondary pollutants. Herein, a self-sustainable material is designed to regenerate the catalyst for long-term reusability without adding to process complexity. The catalyst is based on reduced graphene-oxide impregnated by Fe2O3-MnO (rGO@Fe2O3-MnO; G-F-M) for spontaneous intra electron (e-)-transfer from Mn to Fe. The developed catalyst; G-M-F exhibited 93.7% NOx reduction, which suggests its high catalytic activity. The morphological and structure characterizations confirmed the Fe/Mn loading, contributing to e--transfer between Mn and Fe due to its conductivity. The synthesized G-F-M showed higher NOx reduction about 2.5 folds, than rGO@Fe2O3 (G-FeO) and rGO@MnOx (G-MnOx). The performance of G-M-F without and with an electrochemical system was also compared, and the difference was only 5%, which is an evidence of the spontaneous e- transfer between the Mn and Fe-NOx complex. The designed catalyst can be used for a long time without external assistance, and its efficiency was not affected significantly (<3.7%) in the presence of high oxygen contents (8%). The as-prepared G-M-F catalyst has great potential for executing a dual role NOx removal and self-regeneration of catalyst (SRC), promoting a sustainable remediation approach for large-scale applications.

Sharif, H. M. A., Asif, M. B., Wang, Y., Hou, Y.-N., Yang, B., Xiao, X., & Li, C. (2023). Spontaneous intra-electron transfer within rGO@Fe2O3-MnO catalyst promotes long-term NOx reduction at ambient conditions. Journal of Hazardous Materials, 441, 129951. https://doi.org/10.1016/j.jhazmat.2022.129951

This study was supported by the National Natural Science Foundation of China (Grant Nos. 22050410268, 51708356, 52070042).

Elsevier BV

Journal of hazardous materials


PubMed ID

Additional Links

Permanent link to this record