Name:
MEM Relay For the Internet of Things Applications.pdf
Size:
6.436Mb
Format:
PDF
Description:
Accepted Manuscript
Type
Conference PaperAuthors
Li, Ren
Fariborzi, Hossein

KAUST Department
King Abdullah University of Science and Technology,Computer, Electrical and Mathematical Sciences and Engineering Division,Thuwal,Saudi Arabia,23955-6900Electrical and Computer Engineering Program
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
Date
2022-09-16Permanent link to this record
http://hdl.handle.net/10754/681589
Metadata
Show full item recordAbstract
In the dawn of the Internet of Things (IoT) era, device-to-device interactions on real-time data without involving humans have become a vital part of everyday life. Hence, ultra-low-power sensors and processing units are of the utmost importance. In recent years, micro-electromechanical (MEM) relays have been treated as promising beyond-CMOS candidates due to their zero-leaking and steep turn ON/OFF properties. This paper presents a MEM relay and its characterization, followed by a demonstration of relay-based core logic circuits, including an XOR and an adder. The relays' mechanical operation makes them inevitably slower than transistors; however, this paper demonstrates that a scaled 32-bit relay adder consumes 60 times less energy per operation than its CMOS counterpart in 40 nm technology. The proposed relay circuits, with their ultra-low power consumption property, are particularly suitable for applications with rigorous energy requirements while operating at a slow-to-moderate speed, such as wearable accessories, remote sensors, and implantable biomedical devices.Citation
Li, R., & Fariborzi, H. (2022). MEM Relay For the Internet of Things Applications. 2022 36th Symposium on Microelectronics Technology (SBMICRO). https://doi.org/10.1109/sbmicro55822.2022.9881019Publisher
IEEEAdditional Links
https://ieeexplore.ieee.org/document/9881019/ae974a485f413a2113503eed53cd6c53
10.1109/sbmicro55822.2022.9881019