• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Kryging: geostatistical analysis of large-scale datasets using Krylov subspace methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Majumder, Suman cc
    Guan, Yawen
    Reich, Brian J.
    Saibaba, Arvind K.
    KAUST Grant Number
    3800.2
    Date
    2022-09-08
    Permanent link to this record
    http://hdl.handle.net/10754/681127
    
    Metadata
    Show full item record
    Abstract
    Analyzing massive spatial datasets using a Gaussian process model poses computational challenges. This is a problem prevailing heavily in applications such as environmental modeling, ecology, forestry and environmental health. We present a novel approximate inference methodology that uses profile likelihood and Krylov subspace methods to estimate the spatial covariance parameters and makes spatial predictions with uncertainty quantification for point-referenced spatial data. “Kryging” combines Kriging and Krylov subspace methods and applies for both observations on regular grid and irregularly spaced observations, and for any Gaussian process with a stationary isotropic (and certain geometrically anisotropic) covariance function, including the popular Matérn covariance family. We make use of the block Toeplitz structure with Toeplitz blocks of the covariance matrix and use fast Fourier transform methods to bypass the computational and memory bottlenecks of approximating log-determinant and matrix-vector products. We perform extensive simulation studies to show the effectiveness of our model by varying sample sizes, spatial parameter values and sampling designs. A real data application is also performed on a dataset consisting of land surface temperature readings taken by the MODIS satellite. Compared to existing methods, the proposed method performs satisfactorily with much less computation time and better scalability.
    Citation
    Majumder, S., Guan, Y., Reich, B. J., & Saibaba, A. K. (2022). Kryging: geostatistical analysis of large-scale datasets using Krylov subspace methods. Statistics and Computing, 32(5). https://doi.org/10.1007/s11222-022-10104-3
    Sponsors
    The authors were partially supported by the National Science Foundation through the awards DMS-1845406 and DMS-1638521. The authors were also partially supported by the National Institute of Health through the awards R01ES031651-01 and R01ES027892 and by The King Abdullah University of Science and Technology grant 3800.2. We would like to thank them for their support.
    Publisher
    Springer Science and Business Media LLC
    Journal
    Statistics and Computing
    DOI
    10.1007/s11222-022-10104-3
    Additional Links
    https://link.springer.com/10.1007/s11222-022-10104-3
    ae974a485f413a2113503eed53cd6c53
    10.1007/s11222-022-10104-3
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.