Mixing by stirring: Optimizing shapes and strategies
dc.contributor.author | Eggl, Maximilian F. | |
dc.contributor.author | Schmid, Peter J. | |
dc.date.accessioned | 2022-08-14T11:12:12Z | |
dc.date.available | 2022-08-14T11:12:12Z | |
dc.date.issued | 2022-07-27 | |
dc.identifier.citation | Eggl, M. F., & Schmid, P. J. (2022). Mixing by stirring: Optimizing shapes and strategies. Physical Review Fluids, 7(7). https://doi.org/10.1103/physrevfluids.7.073904 | |
dc.identifier.issn | 2469-990X | |
dc.identifier.doi | 10.1103/PhysRevFluids.7.073904 | |
dc.identifier.uri | http://hdl.handle.net/10754/680261 | |
dc.description.abstract | The mixing of binary fluids by stirrers is a commonplace procedure in many industrial and natural settings, and mixing efficiency directly translates into more homogeneous final products, more enriched compounds, and often substantial economic savings in energy and input ingredients. Enhancements in mixing efficiency can be accomplished by unorthodox stirring protocols as well as modified stirrer shapes that utilize unsteady hydrodynamics and vortex-shedding features to instigate the formation of fluid filaments which ultimately succumb to diffusion and produce a homogeneous mixture. We propose a PDE-constrained optimization approach to address the problem of mixing enhancement for binary fluids. Within a gradient-based framework, we target the stirring strategy as well as the cross-sectional shape of the stirrers to achieve improved mixedness over a given time horizon and within a prescribed energy budget. The optimization produces a significant enhancement in homogeneity in the initially separated fluids, suggesting promising modifications to traditional stirring protocols. | |
dc.description.sponsorship | We gratefully acknowledge discussions and exchanges with Prof. C. Caulfield, Prof. J.-L. Thiffeault, Prof. K. Schneider, and Dr. F. Marcotte. M.F.E. gratefully acknowledges funding through the Joachim Herz Stiftung. | |
dc.publisher | American Physical Society (APS) | |
dc.relation.url | https://link.aps.org/doi/10.1103/PhysRevFluids.7.073904 | |
dc.rights | Archived with thanks to PHYSICAL REVIEW FLUIDS | |
dc.title | Mixing by stirring: Optimizing shapes and strategies | |
dc.type | Article | |
dc.contributor.department | Department of Mechanical Engineering, KAUST, Thuwal 23955, Saudi Arabia | |
dc.contributor.department | Mechanical Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.identifier.journal | PHYSICAL REVIEW FLUIDS | |
dc.identifier.wosut | WOS:000835310900001 | |
dc.eprint.version | Publisher's Version/PDF | |
dc.contributor.institution | Institute of Physiological Chemistry, University of Mainz Medical Center, 55128 Mainz, Germany | |
dc.identifier.volume | 7 | |
dc.identifier.issue | 7 | |
dc.identifier.arxivid | 2108.07064 | |
kaust.person | Schmid, Peter | |
refterms.dateFOA | 2022-08-14T11:13:12Z |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Mechanical Engineering Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/mechanical-engineering/Pages/home.aspx