Name:
Life on the Urbach Edge.pdf
Size:
974.9Kb
Format:
PDF
Description:
Accepted Manuscript
Name:
images_large_jz2c01812_0005.jpeg
Size:
61.07Kb
Format:
JPEG image
Description:
Graphical abstract
Type
ArticleKAUST Department
Material Science and Engineering ProgramKAUST Solar Center (KSC)
Physical Science and Engineering (PSE) Division
KAUST Grant Number
IED OSR-2019-4208IED OSR-2019-4580
OSR-CARF/CCF-3079
OSR-CRG2019-4093
OSR-CRG2020-4350
REI/1/4833-01-01
Date
2022-08-12Embargo End Date
2023-08-12Permanent link to this record
http://hdl.handle.net/10754/680256
Metadata
Show full item recordAbstract
The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley-Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.Citation
Ugur, E., Ledinský, M., Allen, T. G., Holovský, J., Vlk, A., & De Wolf, S. (2022). Life on the Urbach Edge. The Journal of Physical Chemistry Letters, 7702–7711. https://doi.org/10.1021/acs.jpclett.2c01812Sponsors
This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award nos. OSR-CARF/CCF-3079, OSR-CRG2019-4093, OSR-CRG2020-4350, IED OSR-2019-4208, IED OSR-2019-4580, and REI/1/4833-01-01. J.H. acknowledges the Czech Ministry of Education, Youth and Sports grant no. CZ.02.1.01/0.0/0.0/15_003/0000464 (Centre of Advanced Photovoltaics). M.L. and A.V. acknowledge grant no CZ.02.1.01/0.0/0.0/16_026/0008382 (CARAT) and LUASK 22202. M.L., J.H., and A.V. also acknowledge the use of the CzechNanoLab research infrastructure supported by the MEYS (LM2018110).Publisher
American Chemical Society (ACS)PubMed ID
35960888Additional Links
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c01812ae974a485f413a2113503eed53cd6c53
10.1021/acs.jpclett.2c01812
Scopus Count
Related articles
- Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites.
- Authors: Ledinsky M, Schönfeldová T, Holovský J, Aydin E, Hájková Z, Landová L, Neyková N, Fejfar A, De Wolf S
- Issue date: 2019 Mar 21
- Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion-Cation Perovskite Solar Cells.
- Authors: Subedi B, Li C, Chen C, Liu D, Junda MM, Song Z, Yan Y, Podraza NJ
- Issue date: 2022 Feb 16
- Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells.
- Authors: Yang Z, Rajagopal A, Jen AK
- Issue date: 2017 Dec
- A universal Urbach rule for disordered organic semiconductors.
- Authors: Kaiser C, Sandberg OJ, Zarrabi N, Li W, Meredith P, Armin A
- Issue date: 2021 Jun 28
- Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces.
- Authors: Chen M, Dong H, Xue M, Yang C, Wang P, Yang Y, Zhu H, Wu C, Yao Y, Luo W, Zou Z
- Issue date: 2021 Nov 4