• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Assessment of the Bacterial Growth Potential of Reverse Osmosis Produced Chlorinated Drinking Water

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MSThesis_AlejandraIbarra_07-2022.pdf
    Size:
    3.304Mb
    Format:
    PDF
    Description:
    MS Thesis
    Download
    Type
    Thesis
    Authors
    Felix, Alejandra Ibarra cc
    Advisors
    Vrouwenvelder, Johannes S. cc
    Committee members
    Saikaly, Pascal cc
    Burton, Jones
    Farhat, Nadia
    Program
    Environmental Science and Engineering
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2022-07
    Permanent link to this record
    http://hdl.handle.net/10754/679856
    
    Metadata
    Show full item record
    Abstract
    Reverse Osmosis (RO) filtration is capable of producing high quality drinking water with an ultra-low nutrient level. Therefore, a very low bacterial growth potential (BGP). BGP is a key bioassay to evaluate microbial quality and the biological stability of drinking water. Current methods to assess BGP in drinking water need to be adapted to the wide variety of water types due to results could highly vary from each, providing unreliable insights to the biological stability of the assessed water. This study evaluates the application of an FCM-based BGP assay for RO produced chlorinated drinking water. The approach combines (i) the standardization of a quenching agent concentration, (ii) the impact of sample pre-treatment such as filtration and pasteurization on the BGP of RO produced chlorinated water, (iii) the effect of different inoculums (an indigenous community and a mixture with bottled water) on the bacterial growth and their longevity after being stored, (iv) the use of BGP to assess the performance of carbon filters in removing chlorine and (v) the use of BGP to assess the effect of the addition of magnesium on bacterial growth. The results showed that high concentrations of sodium metabisulphite (> 7.5 mg/L) decrease the pH levels of the water,thus, inhibiting bacterial growth. Filtration had a significant effect on BGP values (2.62 x10^5 intact cells/mL) in comparison to pasteurization (9.02 x 10^4 intact cells/mL), when compared to the control. Using a mixture of water types as inoculum might provide a better insight to bacterial growth potential in water due to a higher consumption of nutrients. BGP demonstrated to be a sensitive tool to test the performance of carbonfilters applied to remove chlorine and its applicability to evaluate the biological stability of RO produced chlorinated drinking water. The concentrations of magnesium chloride tested in this study did not have a significant effect on cell numbers.
    Citation
    Felix, A. I. (2022). Assessment of the Bacterial Growth Potential of Reverse Osmosis Produced Chlorinated Drinking Water [KAUST Research Repository]. https://doi.org/10.25781/KAUST-BG00M
    DOI
    10.25781/KAUST-BG00M
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-BG00M
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; MS Theses

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.