• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Biophysical Characterization of the BIRD Complex and their Mode of Interaction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    3.0.pdf
    Size:
    1.712Mb
    Format:
    PDF
    Description:
    MS thesis
    Embargo End Date:
    2023-07-06
    Download
    Type
    Thesis
    Authors
    Wang, Luyao cc
    Advisors
    Arold, Stefan T. cc
    Committee members
    Habuchi, Satoshi cc
    Blilou, Ikram cc
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2022-07-06
    Embargo End Date
    2023-07-06
    Permanent link to this record
    http://hdl.handle.net/10754/679640
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2023-07-06.
    Abstract
    In Arabidopsis thaliana, the development and the defense system are precisely controlled by some proteins to allocate energy and resources as needed. JASMONATE-ZIM domain 3 protein is the repressor of the jasmonic acid defense pathway. JACKDAW (JKD), SHORTSHOOT (SHR), and SCARECROW (SCR) bind together to form the BIRD complex, which regulates root patterning. The transcription factor Teosinte branched1/Cycloidea/Proliferating cell factor 14 (TCP14) also regulates plant development. Recent data shows that JAZ3 and TCP14 interact with JKD and may form a ternary complex, which reveals the study of the five proteins mentioned above may help to understand how defense signals are interpreted during plant growth. The interactions of these five proteins provide a theoretical base to maximize plant fitness and increase crop yield. Using protein purification, microscale thermophoresis, isothermal titration calorimetry, negative staining, X-ray crystallography in this project, we identified JKD interacted with JAZ3, and JKD interacted with TCP14, but they could not form a ternary complex in vitro; SHR/SCR interacted with JAZ3. Those binding results suggests TCP14 and SHR/SCR may have very similar binding site of JKD, and JAZ3 may guide the degradation of the BIRD complex. In structural studies, we resolved the 2D class average that showed the outline of the BIRD complex and it potentially helped to identify how JKD bound to DNA. We also determined the crystal structure of the TCP14 domain, which was an intertwined dimer that possibly uses arginine residues in the N terminus to interact with DNA. These interaction and structure studies of the five proteins provide the basis to understand how defense signals affect plant development.
    Citation
    Wang, L. (2022). Biophysical Characterization of the BIRD Complex and their Mode of Interaction [KAUST Research Repository]. https://doi.org/10.25781/KAUST-128BF
    DOI
    10.25781/KAUST-128BF
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-128BF
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Bioscience Program; MS Theses

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.