Multiscale and layer-stripping wave-equation dispersion inversion of Rayleigh waves
Type
ArticleAuthors
Liu, Zhaolun
Huang, Lianjie

Date
2019-05-10Permanent link to this record
http://hdl.handle.net/10754/679211
Metadata
Show full item recordAbstract
The iterative wave-equation dispersion inversion can suffer from the local minimum problem when inverting seismic data from complex Earth models. We develop a multiscale, layerstripping method to alleviate the local minimum problem ofwave-equation dispersion inversion of Rayleigh waves and improve the inversion robustness. We first invert the high-frequency and near-offset data for the shallow S-velocity model, and gradually incorporate the lowerfrequency components of data with longer offsets to reconstruct the deeper regions of the model. We use a synthetic model to illustrate the local minima problem of wave-equation dispersion inversion and how our multiscale and layer-stripping wave-equation dispersion inversion method can mitigate the problem. We demonstrate the efficacy of our new method using field Rayleigh-wave data.Citation
Liu, Z., & Huang, L. (2019). Multiscale and layer-stripping wave-equation dispersion inversion of Rayleigh waves. Geophysical Journal International, 218(3), 1807–1821. doi:10.1093/gji/ggz215Sponsors
This work was supported by U.S. Department of Energy through contract DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL). We thank AltaRock Energy, Inc. and Dr. Trenton Cladouhos for providing surface seismic data from the Blue Mountain geothermal field. Zhaolun Liu thank King Abdullah University of Science and Technology (KAUST) for funding his graduate studies. The computation was performed using supercomputers of LANL's Institutional Computing Program. Additional computational resources were made available through the KAUST Supercomputing Laboratory (KSL).Publisher
Oxford University Press (OUP)Additional Links
https://academic.oup.com/gji/article/218/3/1807/5487892ae974a485f413a2113503eed53cd6c53
10.1093/gji/ggz215