• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Multiscale and layer-stripping wave-equation dispersion inversion of Rayleigh waves

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Liu, Zhaolun cc
    Huang, Lianjie cc
    Date
    2019-05-10
    Permanent link to this record
    http://hdl.handle.net/10754/679211
    
    Metadata
    Show full item record
    Abstract
    The iterative wave-equation dispersion inversion can suffer from the local minimum problem when inverting seismic data from complex Earth models. We develop a multiscale, layerstripping method to alleviate the local minimum problem ofwave-equation dispersion inversion of Rayleigh waves and improve the inversion robustness. We first invert the high-frequency and near-offset data for the shallow S-velocity model, and gradually incorporate the lowerfrequency components of data with longer offsets to reconstruct the deeper regions of the model. We use a synthetic model to illustrate the local minima problem of wave-equation dispersion inversion and how our multiscale and layer-stripping wave-equation dispersion inversion method can mitigate the problem. We demonstrate the efficacy of our new method using field Rayleigh-wave data.
    Citation
    Liu, Z., & Huang, L. (2019). Multiscale and layer-stripping wave-equation dispersion inversion of Rayleigh waves. Geophysical Journal International, 218(3), 1807–1821. doi:10.1093/gji/ggz215
    Sponsors
    This work was supported by U.S. Department of Energy through contract DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL). We thank AltaRock Energy, Inc. and Dr. Trenton Cladouhos for providing surface seismic data from the Blue Mountain geothermal field. Zhaolun Liu thank King Abdullah University of Science and Technology (KAUST) for funding his graduate studies. The computation was performed using supercomputers of LANL's Institutional Computing Program. Additional computational resources were made available through the KAUST Supercomputing Laboratory (KSL).
    Publisher
    Oxford University Press (OUP)
    Journal
    Geophysical Journal International
    DOI
    10.1093/gji/ggz215
    Additional Links
    https://academic.oup.com/gji/article/218/3/1807/5487892
    ae974a485f413a2113503eed53cd6c53
    10.1093/gji/ggz215
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.