• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Suppressing migration image artifacts using a support vector machine method

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Chen, Yuqing cc
    Huang, Yunsong cc
    Huang, Lianjie cc
    Date
    2020-09-01
    Permanent link to this record
    http://hdl.handle.net/10754/679202
    
    Metadata
    Show full item record
    Abstract
    Reverse time migration (RTM) can produce high-quality images of complex subsurface structures when using seismic data acquired by a reasonably dense data acquisition geometry. However, RTM produces significant image artifacts when using data from a sparse data acquisition geometry because of incomplete cancellation of migration "smiles."These artifacts obscure migration images of actual geology, leading to possible misidentification of important geologic features of interest. A specularity filter based on the semblance equation is commonly used in the dip-angle angle-domain common image gather (ADCIG) to preserve signals while suppressing image artifacts. In dip-angle ADCIG, the signals are assumed to have higher semblance scores because they are horizontally more coherent than the artifacts. However, this assumption fails when the image artifacts are severe. We have developed a new approach to suppressing migration image artifacts using a support vector machine (SVM) method. We first develop multiple criteria to distinguish between the signals and artifacts in the dip-angle ADCIG, rather than using only the semblance criterion. We then calculate the weights using a supervised SVM method. The weights approach one for valid signal points, and approach zero for artifact points. Finally, we apply the weights to the dip-angle ADCIG to preserve the effective signals and suppress the image artifacts. We verify the effectiveness of our method, denoted as SVM filtering, using numerical tests on synthetic and field data to produce migration images with improved signal-to-noise ratios and reduced aliasing artifacts.
    Citation
    Chen, Y., Huang, Y., & Huang, L. (2020). Suppressing migration image artifacts using a support vector machine method. GEOPHYSICS, 85(5), S255–S268. doi:10.1190/geo2019-0157.1
    Sponsors
    This work was supported by the U.S. Department of Energy (DOE) through the Los Alamos National Laboratory (LANL), which is operated by Triad National Security, LLC, for the National Nuclear Security Administration (NNSA) of the U.S. DOE under contract no. 89233218CNA000001. Y. Chen would like to thank King Abdullah University of Science and Technology for funding his graduate studies. This research used resources provided by the LANL Institutional Computing Program, which is supported by the U.S. DOE NNSA under contract no. 89233218CNA000001.
    Publisher
    Society of Exploration Geophysicists
    Journal
    Geophysics
    DOI
    10.1190/geo2019-0157.1
    Additional Links
    http://mr.crossref.org/iPage?doi=10.1190%2Fgeo2019-0157.1
    ae974a485f413a2113503eed53cd6c53
    10.1190/geo2019-0157.1
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.