A regularised slender-body theory of non-uniform filaments
dc.contributor.author | Walker, B. J. | |
dc.contributor.author | Curtis, M. P. | |
dc.contributor.author | Ishimoto, K. | |
dc.contributor.author | Gaffney, E. A. | |
dc.date.accessioned | 2022-06-06T11:42:13Z | |
dc.date.available | 2022-06-06T11:42:13Z | |
dc.date.issued | 2020-07-14 | |
dc.identifier.citation | Walker, B. J., Curtis, M. P., Ishimoto, K., & Gaffney, E. A. (2020). A regularised slender-body theory of non-uniform filaments. Journal of Fluid Mechanics, 899. doi:10.1017/jfm.2020.434 | |
dc.identifier.issn | 1469-7645 | |
dc.identifier.issn | 0022-1120 | |
dc.identifier.doi | 10.1017/jfm.2020.434 | |
dc.identifier.uri | http://hdl.handle.net/10754/678694 | |
dc.description.abstract | Resolving the detailed hydrodynamics of a slender body immersed in highly viscous Newtonian fluid has been the subject of extensive research, applicable to a broad range of biological and physical scenarios. In this work, we expand upon classical theories developed over the past fifty years, deriving an algebraically accurate slender-body theory that may be applied to a wide variety of body shapes, ranging from biologically inspired tapering flagella to highly oscillatory body geometries with only weak constraints, most significantly requiring that cross-sections be circular. Inspired by well known analytic results for the flow around a prolate ellipsoid, we pose an ansatz for the velocity field in terms of a regular integral of regularised Stokes-flow singularities with prescribed, spatially varying regularisation parameters. A detailed asymptotic analysis is presented, seeking a uniformly valid expansion of the ansatz integral, accurate at leading algebraic order in the geometry aspect ratio, to enforce no-slip boundary conditions and thus analytically justify the slender-body theory developed in this framework. The regularisation within the ansatz additionally affords significant computational simplicity for the subsequent slender-body theory, with no specialised quadrature or numerical techniques required to evaluate the regular integral. Furthermore, in the special case of slender bodies with a straight centreline in uniform flow, we derive a slender-body theory that is particularly straightforward via use of the analytic solution for a prolate ellipsoid. We evidence the validity of our simple theory with explicit numerical examples for a wide variety of slender bodies, and highlight a potential robustness of our methodology beyond its rigorously justified scope. | |
dc.description.sponsorship | B.J.W. is supported by the UK Engineering and Physical Sciences Research Council (EPSRC), grant EP/N509711/1. K.I. is supported by JSPS-KAKENHI for Young Researchers (18K13456) and JST, PRESTO grant number JPMJPR1921. This publication is based, in part, on work supported by award no. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). | |
dc.publisher | CAMBRIDGE UNIV PRESS | |
dc.relation.url | https://www.cambridge.org/core/product/identifier/S0022112020004346/type/journal_article | |
dc.subject | slender-body theory | |
dc.title | A regularised slender-body theory of non-uniform filaments | |
dc.type | Article | |
dc.identifier.journal | JOURNAL OF FLUID MECHANICS | |
dc.identifier.wosut | WOS:000548433900001 | |
dc.contributor.institution | Univ Oxford, Wolfson Ctr Math Biol, Math Inst, Oxford, England | |
dc.contributor.institution | Hampton Sch, Hanworth Rd, Hampton TW12 3HD, Middx, England | |
dc.contributor.institution | Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan | |
dc.identifier.volume | 899 | |
kaust.grant.number | KUK-C1-013-04 | |
dc.identifier.eid | 2-s2.0-85088381948 |