Type
ArticleAuthors
Leong, Wei Sun
Wang, Haozhe

Yeo, Jingjie

Martin-Martinez, Francisco J.

Zubair, Ahmad

Shen, Pin-Chun
Mao, Yunwei
Palacios, Tomas
Buehler, Markus J.
Hong, Jin-Yong
Kong, Jing
KAUST Grant Number
OSR-2015-CRG4-2634Date
2019-02-20Permanent link to this record
http://hdl.handle.net/10754/678661
Metadata
Show full item recordAbstract
The performance and reliability of large-area graphene grown by chemical vapor deposition are often limited by the presence of wrinkles and the transfer-process-induced polymer residue. Here, we report a transfer approach using paraffin as a support layer, whose thermal properties, low chemical reactivity and non-covalent affinity to graphene enable transfer of wrinkle-reduced and clean large-area graphene. The paraffin-transferred graphene has smooth morphology and high electrical reliability with uniform sheet resistance with ~1% deviation over a centimeter-scale area. Electronic devices fabricated on such smooth graphene exhibit electrical performance approaching that of intrinsic graphene with small Dirac points and high carrier mobility (hole mobility = 14,215 cm2 V−1 s−1; electron mobility = 7438 cm2 V−1 s−1), without the need of further annealing treatment. The paraffin-enabled transfer process could open realms for the development of high-performance ubiquitous electronics based on large-area two-dimensional materials.Citation
Leong, W. S., Wang, H., Yeo, J., Martin-Martinez, F. J., Zubair, A., Shen, P.-C., … Kong, J. (2019). Paraffin-enabled graphene transfer. Nature Communications, 10(1). doi:10.1038/s41467-019-08813-xSponsors
J.K. acknowledges the support from AFOSR FATE MURI, Grant No. FA9550-15-1-0514, NSF DMR/ECCS-1509197, the Center for Energy Efficient Electronics Science (NSF Award 0939514), the King Abdullah University of Science and Technology (No. OSR-2015-CRG4-2634), and U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies (Grant No. 023674). J.-Y.H. acknowledges the support from Korea Research Institute of Chemical Technology (KRICT) project no. KK1801-G01 and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1C1B2007153). J.Y., F.J.M.-M, and M.J.B also acknowledge support from AFOSR FATE MURI, Grant No. FA9550-15-1-0514 and the US Department of Defense, Office of Naval Research (N00014-16-1-233). The work is partially performed at MIT Microsystems Technology Laboratories (MTL) and Center for Nanoscale Systems (CNS), Harvard University. Computational simulations were performed on the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation grant number ACI-1053575, the MIT Engaging Cluster, Singapore's A* STAR Computational Resource Centre, and Singapore's National Supercomputing Centre.Publisher
NATURE PUBLISHING GROUPJournal
NATURE COMMUNICATIONSPubMed ID
30787292PubMed Central ID
PMC6382797Additional Links
http://www.nature.com/articles/s41467-019-08813-xae974a485f413a2113503eed53cd6c53
10.1038/s41467-019-08813-x
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition.
- Authors: Chan J, Venugopal A, Pirkle A, McDonnell S, Hinojos D, Magnuson CW, Ruoff RS, Colombo L, Wallace RM, Vogel EM
- Issue date: 2012 Apr 24
- A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices.
- Authors: Zhang D, Du J, Hong YL, Zhang W, Wang X, Jin H, Burn PL, Yu J, Chen M, Sun DM, Li M, Liu L, Ma LP, Cheng HM, Ren W
- Issue date: 2019 May 28
- Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes.
- Authors: Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng HM, Ren W
- Issue date: 2017 Feb 24
- Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
- Authors: Feng Y, Chen K
- Issue date: 2015 Jan 21
- Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.
- Authors: Kim HH, Kang B, Suk JW, Li N, Kim KS, Ruoff RS, Lee WH, Cho K
- Issue date: 2015 May 26