LongxiZhou/DLPE-method: A comprehensive platform for analyzing pulmonary parenchyma lesions on chest CT.
Type
SoftwareAuthors
Zhou, Longxi
Meng, Xianglin

Huang, Yuxin
Kang, Kai
Zhou, Juexiao

Chu, Yuetan
Li, Haoyang
Xie, Dexuan
Zhang, Jiannan
Yang, Weizhen
Bai, Na
Zhao, Yi
Zhao, Mingyan
Wang, Guohua

Carin, Lawrence

Xiao, Xigang

Yu, Kaijiang

Qiu, Zhaowen

Gao, Xin

KAUST Department
Computational Bioscience Research Center (CBRC)Computer Science
Computer Science Program
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Structural and Functional Bioinformatics Group
Date
2021-08-20Permanent link to this record
http://hdl.handle.net/10754/678660
Metadata
Show full item recordAbstract
A comprehensive platform for analyzing pulmonary parenchyma lesions on chest CT.Citation
LongxiZhou, Arturia-Pendragon-Iris, Leihouyeung, & Lzx325. (2022). LongxiZhou/DLPE-method: DeepLungParenchymaEnhancement (Version 1.0) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.6387700Publisher
GithubAdditional Links
https://github.com/LongxiZhou/DLPE-methodRelations
Is Supplement To:- [Article]
Zhou, L., Meng, X., Huang, Y., Kang, K., Zhou, J., Chu, Y., Li, H., Xie, D., Zhang, J., Yang, W., Bai, N., Zhao, Y., Zhao, M., Wang, G., Carin, L., Xiao, X., Yu, K., Qiu, Z., & Gao, X. (2022). An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors. Nature Machine Intelligence. https://doi.org/10.1038/s42256-022-00483-7. DOI: 10.1038/s42256-022-00483-7 Handle: 10754/678237
ae974a485f413a2113503eed53cd6c53
10.5281/zenodo.6387700