Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation
Type
ArticleDate
2018-08-09Permanent link to this record
http://hdl.handle.net/10754/678633
Metadata
Show full item recordAbstract
High permeance membranes were produced by addition of highly permeable nanoparticulate fillers (hypercrosslinked polystyrene, HCP, and its carbonized form, C-HCP) to a high free volume polymer (polymer of intrinsic microporosity PIM-1) in a thin film (typically 2 µm) on a porous polyacrylonitrile support. Self-standing mixed matrix membranes (MMMs) of thicknesses in the range 40–90 µm were also prepared with the same polymer and fillers. While robust MMMs could only be formed for moderate filler loadings, thin film nanocomposite (TFN) membranes could be produced from dispersions with filler loadings up to 60 wt%. On increasing the filler loading, CO2 permeance increased in line with the predictions of the Maxwell model for a highly permeable filler. Physical ageing led to some loss of permeance coupled with an increase in CO2/N2 selectivity. However, for TFN membranes the greatest effects of ageing were seen within 90 days. After ageing, TFN membranes showed high permeance with reasonable selectivity; for example, with 60 wt% C-HCP, CO2 permeance > 9300 GPU, CO2/N2 selectivity ~ 11.Citation
Bhavsar, R. S., Mitra, T., Adams, D. J., Cooper, A. I., & Budd, P. M. (2018). Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. Journal of Membrane Science, 564, 878–886. doi:10.1016/j.memsci.2018.07.089Sponsors
We thank the UK Engineering and Physical Sciences Research Council (EPSRC) for funding (Grant EP/M001342/1). D. A. thanks the EPSRC for a Fellowship (EP/L021978/1). We thank Prof. Ingo Pinnau, King Abdullah University of Science and Technology, who kindly provided PAN membrane.Publisher
Elsevier BVJournal
JOURNAL OF MEMBRANE SCIENCEAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S037673881830930Xae974a485f413a2113503eed53cd6c53
10.1016/j.memsci.2018.07.089