• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bhavsar, Rupesh S.
    Mitra, Tamoghna
    Adams, Dave J.
    Cooper, Andrew I.
    Budd, Peter M.
    Date
    2018-08-09
    Permanent link to this record
    http://hdl.handle.net/10754/678633
    
    Metadata
    Show full item record
    Abstract
    High permeance membranes were produced by addition of highly permeable nanoparticulate fillers (hypercrosslinked polystyrene, HCP, and its carbonized form, C-HCP) to a high free volume polymer (polymer of intrinsic microporosity PIM-1) in a thin film (typically 2 µm) on a porous polyacrylonitrile support. Self-standing mixed matrix membranes (MMMs) of thicknesses in the range 40–90 µm were also prepared with the same polymer and fillers. While robust MMMs could only be formed for moderate filler loadings, thin film nanocomposite (TFN) membranes could be produced from dispersions with filler loadings up to 60 wt%. On increasing the filler loading, CO2 permeance increased in line with the predictions of the Maxwell model for a highly permeable filler. Physical ageing led to some loss of permeance coupled with an increase in CO2/N2 selectivity. However, for TFN membranes the greatest effects of ageing were seen within 90 days. After ageing, TFN membranes showed high permeance with reasonable selectivity; for example, with 60 wt% C-HCP, CO2 permeance > 9300 GPU, CO2/N2 selectivity ~ 11.
    Citation
    Bhavsar, R. S., Mitra, T., Adams, D. J., Cooper, A. I., & Budd, P. M. (2018). Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. Journal of Membrane Science, 564, 878–886. doi:10.1016/j.memsci.2018.07.089
    Sponsors
    We thank the UK Engineering and Physical Sciences Research Council (EPSRC) for funding (Grant EP/M001342/1). D. A. thanks the EPSRC for a Fellowship (EP/L021978/1). We thank Prof. Ingo Pinnau, King Abdullah University of Science and Technology, who kindly provided PAN membrane.
    Publisher
    Elsevier BV
    Journal
    JOURNAL OF MEMBRANE SCIENCE
    DOI
    10.1016/j.memsci.2018.07.089
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S037673881830930X
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.memsci.2018.07.089
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.