• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Spatiotemporal disparities in regional public risk perception of COVID-19 using Bayesian Spatiotemporally Varying Coefficients (STVC) series models across Chinese cities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Song, Chao
    Yin, Hao
    Shi, Xun
    Xie, Mingyu
    Yang, Shujuan
    Zhou, Junmin
    Wang, Xiuli
    Tang, Zhangying
    Yang, Yili
    Pan, Jay cc
    Date
    2022-06-01
    Permanent link to this record
    http://hdl.handle.net/10754/678613
    
    Metadata
    Show full item record
    Abstract
    Regional public attention has been critical during the COVID-19 pandemic, impacting the effectiveness of sub-national non-pharmaceutical interventions. While studies have focused on public attention at the national level, sub-national public attention has not been well investigated. Understanding sub-national public attention can aid local governments in designing regional scientific guidelines, especially in large countries with substantial spatiotemporal disparities in the spread of infections. Here, we evaluated the online public attention to the COVID-19 pandemic using internet search data and developed a regional public risk perception index (PRPI) that depicts heterogeneous associations between local pandemic risk and public attention across 366 Chinese cities. We used the Bayesian Spatiotemporally Varying Coefficients (STVC) model, a full-map local regression for estimating spatiotemporal heterogeneous relationships of variables, and improved it to the Bayesian Spatiotemporally Interacting Varying Coefficients (STIVC) model to incorporate space–time interaction non-stationarity at spatial or temporal stratified scales. COVID-19 daily cases (median contribution 82.6%) was the most critical factor affecting public attention, followed by urban socioeconomic conditions (16.7%) and daily population mobility (0.7%). After adjusting national and provincial impacts, city-level influence factors accounted for 89.4% and 58.6% in spatiotemporal variations of public attention. Spatiotemporal disparities were substantial among cities and provinces, suggesting that observing national-level public dynamics alone was insufficient. Multi-period PRPI maps revealed clusters and outlier cities with potential public panic and low health literacy. Bayesian STVC series models are systematically proposed and provide a multi-level spatiotemporal heterogeneous analytical framework for understanding collective human responses to major public health emergencies and disasters.
    Citation
    Song, C., Yin, H., Shi, X., Xie, M., Yang, S., Zhou, J., Wang, X., Tang, Z., Yang, Y., & Pan, J. (2022). Spatiotemporal disparities in regional public risk perception of COVID-19 using Bayesian Spatiotemporally Varying Coefficients (STVC) series models across Chinese cities. International Journal of Disaster Risk Reduction, 77, 103078. https://doi.org/10.1016/j.ijdrr.2022.103078
    Sponsors
    We are grateful to Henry Chung (Michigan State University, US) for his ongoing language and academic writing assistance. We appreciate Håvard Rue (King Abdullah University of Science and Technology, Norway), the leading developer of the R-INLA project. We also thank the editors and anonymous reviewers for their constructive comments and valuable suggestions on improving our manuscript. This work was supported by the National Natural Science Foundation of China [grant numbers 42071379, 71874116, 72074163, 71904104, 72104159, 41701448]; the Sichuan Science and Technology Department [grant numbers 2022YFS0052, 2021YFQ0060, 2020YJ0117]; the Chongqing Science and Technology Bureau [grant number cstc2020jscx-cylhX0001]; the Medical Science and Technology Project of Sichuan Provincial Health Commission [grant number 21PJ067]; the Sichuan Provincial Health Commission Project for Prevention and Treatment of Major Infectious Diseases [grant number 2021zc01]; the Fund for Introducing Talents of Sichuan University [grant number YJ202157]; the Research Center of Sichuan County Economy Development [grant number xy2021018]; and the Chengdu Federation of Social Science Association [grant number 2021ZC003]. The funders had no role in the study design, data collection, analysis, publishing decision, or manuscript preparation.
    Publisher
    Elsevier BV
    Journal
    International journal of disaster risk reduction : IJDRR
    DOI
    10.1016/j.ijdrr.2022.103078
    PubMed Central ID
    PMC9148270
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S2212420922002977
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.ijdrr.2022.103078
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.