Seasonal Responses of Indian Summer Monsoon to Dust Aerosols in the Middle East, India, and China
Type
ArticleDate
2016-09-01Permanent link to this record
http://hdl.handle.net/10754/678424
Metadata
Show full item recordAbstract
The seasonal responses of the Indian summer monsoon (ISM) to dust aerosols in local (the Thar Desert) and remote (the Middle East and western China) regions are studied using the WRF Model coupled with online chemistry (WRF-Chem). Ensemble experiments are designed by perturbing model physical and chemical schemes to examine the uncertainties of model parameterizations. Model results show that the dust-induced increase in ISM total rainfall can be attributed to the remote dust in the Middle East, while the contributions from local and remote dust are very limited. Convective rainfall shows a spatially more homogeneous increase than stratiform rainfall, whose responses follow the topography. The magnitude of dust-induced increase in rainfall is comparable to that caused by anthropogenic aerosols. The Middle East dust aerosols tend to enhance the southwesterly monsoon flow, which can transport more water vapor to southern and northern India, while the anthropogenic aerosols tend to enhance the southeasterly monsoon flow, resulting in more water vapor and rainfall over northern India. Both dust and anthropogenic aerosol-induced rainfall responses can be attributed to their heating effect in the mid-to-upper troposphere, which enhances monsoon circulations. The heating effect of dust over the Iranian Plateau seems to play a bigger role than that over the Tibetan Plateau, while the heating of anthropogenic aerosols over the Tibetan Plateau is more important. Moreover, dust aerosols can decrease rainfall over the Arabian Sea through their indirect effect. This study addresses the relative roles of dust and anthropogenic aerosols in altering the ISM rainfall and provides insights into aerosol–ISM interactions.Citation
Jin, Q., Yang, Z.-L., & Wei, J. (2016). Seasonal Responses of Indian Summer Monsoon to Dust Aerosols in the Middle East, India, and China. Journal of Climate, 29(17), 6329–6349. doi:10.1175/jcli-d-15-0622.1Sponsors
We thank the editor and the three reviewers for their constructive and thoughtful comments and suggestions. This study is supported by King Abdullah University of Science and Technology and the Owen-Coates fund. We wish to thank the Texas Advanced Computing Center for providing powerful computing resources.Publisher
AMER METEOROLOGICAL SOCJournal
JOURNAL OF CLIMATEAdditional Links
http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0622.1ae974a485f413a2113503eed53cd6c53
10.1175/JCLI-D-15-0622.1