The effect of hydrogen bonding on the reactivity of OH radicals with prenol and isoprenol: a shock tube and multi-structural torsional variational transition state theory study
Name:
Capture555.JPG
Size:
23.49Kb
Format:
JPEG image
Description:
Graphical abstract
Type
ArticleAuthors
Mohamed, Samah
Monge Palacios, Manuel

Giri, Binod

KHALED, Fethi

Liu, Dapeng

Farooq, Aamir

Sarathy, Mani

KAUST Department
Clean Combustion Research CenterMechanical Engineering Program
Mechanical Engineering
Physical Science and Engineering (PSE) Division
Chemical Engineering Program
KAUST Grant Number
OSR-2016-CRG5-3022Date
2022-05-11Permanent link to this record
http://hdl.handle.net/10754/678031
Metadata
Show full item recordAbstract
The presence of two functional groups (OH and double bond) in C5 methyl-substituted enols (i.e., isopentenols), such as 3-methyl-2-buten-1-ol (prenol) and 3-methyl-3-buten-1-ol (isoprenol), makes them excellent biofuel candidates as fuel additives. As OH radicals are abundant in both combustion and atmospheric environments, OH-initiated oxidation of these isopentenols over wide ranges of temperatures and pressures needs to be investigated. In alkenes, OH addition to the double bond is prominent at low temperatures (i.e., below ∼700 K), and H-atom abstraction dominates at higher temperatures. However, we find that the OH-initiated oxidation of prenol and isoprenol displays a larger role for OH addition at higher temperatures. In this work, the reaction kinetics of prenol and isoprenol with OH radicals was investigated over the temperature range of 900–1290 K and pressure of 1–5 atm by utilizing a shock tube and OH laser diagnostic. To rationalize these chemical systems, variational transition state theory calculations with multi-structural torsional anharmonicity and small curvature tunneling corrections were run using a potential energy surface characterized at the UCCSD(T)/jun-cc-pVQZ//M06-2X/6-311++G(2df,2pd) level of theory. A good agreement was observed between the experiment and theory, with both predicting a non-Arrhenius behavior and negligible pressure effects. OH additions to the double bond of prenol and isoprenol were found to be important, with at least 50% contribution to the total rate constants even at temperatures as high as 700 and 2000 K, respectively. This behavior was attributed to the stabilizing effect induced by hydrogen bonding between the reacting OH radical and the OH functional group of isopentenols at the saddle points. These stabilizing intermolecular interactions help mitigate the entropic effects that hinder association reactions as temperature increases, thus extending the prominent role of addition pathways to high temperatures. The site-specific rate constants were also found to be slower than their analogous reactions of OH + n-alkenes.Citation
Mohamed, S. Y., Monge-Palacios, M., Giri, B. R., Khaled, F., Liu, D., Farooq, A., & Sarathy, S. M. (2022). The effect of hydrogen bonding on the reactivity of OH radicals with prenol and isoprenol: a shock tube and multi-structural torsional variational transition state theory study. Physical Chemistry Chemical Physics. https://doi.org/10.1039/d2cp00737aSponsors
Research reported in this publication was funded by the Office of Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUST) (Grant OSR-2016-CRG5-3022). We also acknowledge the resources of the Supercomputer Laboratory at KAUST.Publisher
Royal Society of Chemistry (RSC)PubMed ID
35579396Additional Links
http://xlink.rsc.org/?DOI=D2CP00737Aae974a485f413a2113503eed53cd6c53
10.1039/d2cp00737a
Scopus Count
Except where otherwise noted, this item's license is described as Archived with thanks to Physical Chemistry Chemical Physics under a Creative Commons license, details at: http://creativecommons.org/licenses/by/3.0/
Related articles
- Predictive Combustion Kinetics of OH Radical Reactions with a C5 Unsaturated Alcohol: The Competitive H-Abstraction and OH-Addition Reactions of 2-Methyl-3-buten-2-ol.
- Authors: Li Y, Guan J, Wang H, Zhu L, Ye L, Wang Z
- Issue date: 2021 Dec 9
- Pressure-dependent kinetics of the <i>o</i>-xylene reaction with OH radicals.
- Authors: Li Y, Guo X, Zhang RM, Zhang H, Zhang X, Xu X
- Issue date: 2022 Apr 13
- Multistructural Variational Reaction Kinetics of the Simplest Unsaturated Methyl Ester: H-Abstraction from Methyl Acrylate by H, OH, CH<sub>3</sub>, and HO<sub>2</sub> Radicals.
- Authors: Li W, Li J, Ning H, Shang Y, Luo SN
- Issue date: 2021 Jun 17
- A kinetics study on hydrogen abstraction reactions of cyclopentane by hydrogen, methyl, and ethyl radicals.
- Authors: Chen W, Guo X, Chen L, Zhang R, Li Y, Feng H, Xu X, Zhang X
- Issue date: 2021 Mar 28
- Chemical kinetics of H-abstractions from dimethyl amine by H, CH<sub>3</sub>, OH, and HO<sub>2</sub> radicals with multi-structural torsional anharmonicity.
- Authors: Shang Y, Ning H, Shi J, Wang H, Luo SN
- Issue date: 2019 Jun 21