Cucker-Smale model with finite speed of information propagation: Well-posedness, flocking and mean-field limit
Type
ArticleAuthors
Haskovec, JanDate
2022-09Permanent link to this record
http://hdl.handle.net/10754/678005
Metadata
Show full item recordAbstract
We study a variant of the Cucker-Smale model where information between agents propagates with a finite speed [Math Processing Error]. This leads to a system of functional differential equations with state-dependent delay. We prove that, if initially the agents travel slower than [Math Processing Error], then the discrete model admits unique global solutions. Moreover, under a generic assumption on the influence function, we show that there exists a critical information propagation speed [Math Processing Error] such that if [Math Processing Error], the system exhibits asymptotic flocking in the sense of the classical definition of Cucker and Smale. For constant initial datum the value of [Math Processing Error] is explicitly calculable. Finally, we derive a mean-field limit of the discrete system, which is formulated in terms of probability measures on the space of time-dependent trajectories. We show global well-posedness of the mean-field problem and argue that it does not admit a description in terms of the classical Fokker-Planck equation.Citation
Haskovec, J. (2022). Cucker-Smale model with finite speed of information propagation: Well-posedness, flocking and mean-field limit. Kinetic and Related Models, 0(0), 0. https://doi.org/10.3934/krm.2022033Sponsors
The author acknowledges the fruitful discussions with Oliver Tse that have taken place during his visit of TU Eindhoven, and with Jan Vyb´ıral during his visit of Czech Technical University in Prague, which helped to initiate and develop some ideas presented in this papeJournal
Kinetic and Related ModelsarXiv
2112.12806Additional Links
https://www.aimsciences.org/article/doi/10.3934/krm.2022033ae974a485f413a2113503eed53cd6c53
10.3934/krm.2022033