Notice

This is not the latest version of this item. The latest version can be found at: https://repository.kaust.edu.sa/handle/10754/677982

Show simple item record

dc.contributor.authorZerbinati, Umberto
dc.date.accessioned2022-10-20T12:31:54Z
dc.date.available2022-05-17T07:22:02Z
dc.date.available2022-10-20T12:31:54Z
dc.date.issued2022
dc.identifier.issn2405-8963
dc.identifier.doi10.1016/j.ifaco1.2022.09.072
dc.identifier.urihttp://hdl.handle.net/10754/677982
dc.description.abstractPhysics Informed Neural Networks (PINNs) have recently gained popularity for solving partial differential equations, given the fact they escape the curse of dimensionality. In this paper, we present Physics Informed Neural Networks as an underdetermined point matching collocation method then expose the connection between Galerkin Least Squares (GALS) and PINNs, to develop an a priori error estimate, in the context of elliptic problems. In particular, techniques that belong to the realm of least squares finite elements and Rademacher complexity analysis are used to obtain the error estimate.
dc.description.sponsorshipI would like to express my deepest appreciation to Prof. G. Turkiyyah and Dr. S. Zampini without whom this paper would not have been possible.
dc.publisherarXiv
dc.relation.urlhttps://arxiv.org/pdf/2202.01059.pdf
dc.rightsArchived with thanks to arXiv
dc.subjectMachine Learning
dc.subjectLeast -squares method
dc.subjectFinite Element Analysis
dc.subjectPhysics Informed Neural Networks
dc.subjectA Priori Error Estimate
dc.titlePINNs and GaLS: A Priori Error Estimates for Shallow Physics Informed Neural Networks Applied to Elliptic Problems
dc.typeConference Paper
dc.contributor.departmentKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
dc.conference.dateJUL 27-29, 2022
dc.conference.name10th Vienna International Conference on Mathematical Modelling (MATHMOD)
dc.conference.locationTech Univ Wien
dc.identifier.wosutWOS:000860842100011
dc.eprint.versionPost-print
dc.identifier.volume55
dc.identifier.issue20
dc.identifier.pages61-66
dc.identifier.arxivid2202.01059
kaust.personZerbinati, Umberto R.
refterms.dateFOA2022-05-17T07:22:45Z


Files in this item

Thumbnail
Name:
2202.01059 (1).pdf
Size:
143.1Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version