Social-Implicit: Rethinking Trajectory Prediction Evaluation and The Effectiveness of Implicit Maximum Likelihood Estimation
dc.contributor.author | Mohamed, Abduallah | |
dc.contributor.author | Zhu, Deyao | |
dc.contributor.author | Vu, Warren | |
dc.contributor.author | Elhoseiny, Mohamed | |
dc.contributor.author | Claudel, Christian | |
dc.date.accessioned | 2022-12-05T12:09:05Z | |
dc.date.available | 2022-05-16T08:59:30Z | |
dc.date.available | 2022-12-05T12:09:05Z | |
dc.date.issued | 2022-10-23 | |
dc.identifier.citation | Mohamed, A., Zhu, D., Vu, W., Elhoseiny, M., & Claudel, C. (2022). Social-Implicit: Rethinking Trajectory Prediction Evaluation and The Effectiveness of Implicit Maximum Likelihood Estimation. Computer Vision – ECCV 2022, 463–479. https://doi.org/10.1007/978-3-031-20047-2_27 | |
dc.identifier.isbn | 9783031200465 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.doi | 10.1007/978-3-031-20047-2_27 | |
dc.identifier.uri | http://hdl.handle.net/10754/677949 | |
dc.description.abstract | Best-of-N (BoN) Average Displacement Error (ADE)/ Final Displacement Error (FDE) is the most used metric for evaluating trajectory prediction models. Yet, the BoN does not quantify the whole generated samples, resulting in an incomplete view of the model’s prediction quality and performance. We propose a new metric, Average Mahalanobis Distance (AMD) to tackle this issue. AMD is a metric that quantifies how close the whole generated samples are to the ground truth. We also introduce the Average Maximum Eigenvalue (AMV) metric that quantifies the overall spread of the predictions. Our metrics are validated empirically by showing that the ADE/FDE is not sensitive to distribution shifts, giving a biased sense of accuracy, unlike the AMD/AMV metrics. We introduce the usage of Implicit Maximum Likelihood Estimation (IMLE) as a replacement for traditional generative models to train our model, Social-Implicit. IMLE training mechanism aligns with AMD/AMV objective of predicting trajectories that are close to the ground truth with a tight spread. Social-Implicit is a memory efficient deep model with only 5.8K parameters that runs in real time of 580 Hz and achieves competitive results. | |
dc.publisher | Springer Nature Switzerland | |
dc.relation.url | https://link.springer.com/10.1007/978-3-031-20047-2_27 | |
dc.rights | This is an accepted manuscript version of a paper before final publisher editing and formatting. Archived with thanks to Springer Nature Switzerland. | |
dc.title | Social-Implicit: Rethinking Trajectory Prediction Evaluation and The Effectiveness of Implicit Maximum Likelihood Estimation | |
dc.type | Conference Paper | |
dc.contributor.department | Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division | |
dc.contributor.department | Computer Science Program | |
dc.contributor.department | Visual Computing Center (VCC) | |
dc.rights.embargodate | 2023-10-23 | |
dc.conference.date | 2022-10-23 to 2022-10-27 | |
dc.conference.name | 17th European Conference on Computer Vision, ECCV 2022 | |
dc.conference.location | Tel Aviv, ISR | |
dc.eprint.version | Post-print | |
dc.contributor.institution | The University of Texas, Austin, USA | |
dc.identifier.volume | 13682 LNCS | |
dc.identifier.pages | 463-479 | |
dc.identifier.arxivid | 2203.03057 | |
kaust.person | Zhu, Deyao | |
kaust.person | Elhoseiny, Mohamed | |
dc.relation.issupplementedby | github:abduallahmohamed/Social-Implicit | |
dc.identifier.eid | 2-s2.0-85142694428 | |
refterms.dateFOA | 2022-05-16T10:10:37Z | |
display.relations | <b>Is Supplemented By:</b><br/> <ul><li><i>[Software]</i> <br/> Title: abduallahmohamed/Social-Implicit: Code for: "Social-Implicit: Rethinking Trajectory Prediction Evaluation and The Effectiveness of Implicit Maximum Likelihood Estimation" Accepted @ ECCV2022. Publication Date: 2021-11-22. github: <a href="https://github.com/abduallahmohamed/Social-Implicit" >abduallahmohamed/Social-Implicit</a> Handle: <a href="http://hdl.handle.net/10754/686453" >10754/686453</a></a></li></ul> |
Files in this item
This item appears in the following Collection(s)
-
Conference Papers
-
Computer Science Program
For more information visit: https://cemse.kaust.edu.sa/cs -
Visual Computing Center (VCC)
-
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/