Type
ArticleKAUST Department
Chemical Engineering ProgramClean Combustion Research Center
Combustion and Pyrolysis Chemistry (CPC) Group
Computational Reacting Flow Laboratory (CRFL)
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2022-05-13Embargo End Date
2024-05-13Permanent link to this record
http://hdl.handle.net/10754/677924
Metadata
Show full item recordAbstract
Turbulent jet ignition (TJI) is a promising technology for burning ultra-lean mixtures; the process is comprised of hot reactive jets issuing from a pre-chamber (PC) and initiating combustion in the main chamber (MC). The present study employs a simplified zero-dimensional (0D) partially stirred reactor (PaSR) model to describe the complex mixing and reaction progress within the PC and its subsequent impact on the MC combustion in terms of combustion efficiency and pollutant formation characteristics. Full three-dimensional (3D) computational fluid dynamics (CFD) data are used to calibrate the PC model, which is subsequently linked to predict the MC combustion behavior. We propose a model to predict the effects of the fuel formulations with varying research octane number (RON) and octane sensitivities (OS) on the TJI performance. After a careful parametric study, a dedicated merit function for identifying the optimal TJI operating conditions was proposed to assess multiple fuel properties and their influence on MC combustion. The model properly accounts for micro-mixing effects in the early jet expansion phase, and represents the effects of a PC jet on enhancing flammability and pollutant mitigation. It was demonstrated that aromatic content affects not only the progress of the thermokinetic runaway, but also the importance of NO formation paths in MC (N2O vs NNH routes), and the effect of the PC jet on MC flammability limits. Among the jet active species, OH and NO exhibited the greatest chemical impact on MC reactivity, while the chemical effects of CO2 and H2O remained limited. The overall fuel TJI merit function showed optimum performance for fuels with 2 < OS < 6 and high RON, similar to the requirements for spark-ignited engine operation beyond motor octane number (MON) conditions, fuel lean advanced compression ignition operation, and spark-induced compression ignition.Citation
Gorbatenko, I., Nicolle, A., Silva, M., Im, H. G., & Sarathy, S. M. (2022). The impact of gasoline formulation on turbulent jet ignition. Fuel, 324, 124373. https://doi.org/10.1016/j.fuel.2022.124373Sponsors
The paper is based on work supported by the Saudi Aramco Research and Development Center FUELCOM3 Program under Master Research Agreement Number 6600024505/01. FUELCOM (Fuel Combustion for Advanced Engines) is a collaborative research undertaking between Saudi Aramco and KAUST, intended to address the fundamental aspects of hydrocarbon fuel combustion in engines, and develop fuel/engine design tools suitable for advanced combustion modes. Authors also thank Dr. Eshan Singh and Dr. Balaji Mohan for invaluable comments and discussion.Publisher
Elsevier BVAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S001623612201225Xae974a485f413a2113503eed53cd6c53
10.1016/j.fuel.2022.124373