Unveiling the Multiradical Character of the Biphenylene Network and Its Anisotropic Charge Transport.
Name:
images_large_ja2c02178_0005.jpeg
Size:
117.2Kb
Format:
JPEG image
Description:
Graphical abstract
Type
ArticleAuthors
Alcón, Isaac
Calogero, Gaetano

Papior, Nick
Antidormi, Aleandro

Song, Kenan
Cummings, Aron W

Brandbyge, Mads

Roche, Stephan
KAUST Department
Physical Science and Engineering (PSE) DivisionDate
2022-04-27Permanent link to this record
http://hdl.handle.net/10754/676705
Metadata
Show full item recordAbstract
Recent progress in the on-surface synthesis and characterization of nanomaterials is facilitating the realization of new carbon allotropes, such as nanoporous graphenes, graphynes, and 2D π-conjugated polymers. One of the latest examples is the biphenylene network (BPN), which was recently fabricated on gold and characterized with atomic precision. This gapless 2D organic material presents uncommon metallic conduction, which could help develop innovative carbon-based electronics. Here, using first principles calculations and quantum transport simulations, we provide new insights into some fundamental properties of BPN, which are key for its further technological exploitation. We predict that BPN hosts an unprecedented spin-polarized multiradical ground state, which has important implications for the chemical reactivity of the 2D material under practical use conditions. The associated electronic band gap is highly sensitive to perturbations, as seen in finite temperature (300 K) molecular dynamics simulations, but the multiradical character remains stable. Furthermore, BPN is found to host in-plane anisotropic (spin-polarized) electrical transport, rooted in its intrinsic structural features, which suggests potential device functionality of interest for both nanoelectronics and spintronics.Citation
Alcón, I., Calogero, G., Papior, N., Antidormi, A., Song, K., Cummings, A. W., Brandbyge, M., & Roche, S. (2022). Unveiling the Multiradical Character of the Biphenylene Network and Its Anisotropic Charge Transport. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.2c02178Sponsors
I.A. is grateful for a Juan de la Cierva postdoctoral grant (FJC2019-038971-I) from the Spanish Ministerio de Ciencia e Innovación. Financial support by Villum Fonden (00013340) is gratefully acknowledged. ICN2 is funded by the CERCA Programme from Generalitat de Catalunya and is supported by the Severo Ochoa program from Spanish MINECO (grant no. SEV-2017-0706). The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation (DNRF103). S.R. acknowledges funding from the European Union Seventh Framework Programme under grant no. 881603 (Graphene Flagship).Publisher
American Chemical Society (ACS)PubMed ID
35476458Additional Links
https://pubs.acs.org/doi/10.1021/jacs.2c02178ae974a485f413a2113503eed53cd6c53
10.1021/jacs.2c02178
Scopus Count
Except where otherwise noted, this item's license is described as Archived with thanks to Journal of the American Chemical Society under a Creative Commons license, details at: https://creativecommons.org/licenses/by/4.0/
Related articles
- Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: a first-principles study.
- Authors: Bafekry A, Faraji M, Fadlallah MM, Jappor HR, Karbasizadeh S, Ghergherehchi M, Gogova D
- Issue date: 2021 Oct 27
- Opening a Band Gap in Biphenylene Monolayer via Strain: A First-Principles Study.
- Authors: Hou Y, Ren K, Wei Y, Yang D, Cui Z, Wang K
- Issue date: 2023 May 18
- Glide Mirror Plane Protected Nodal-Loop in an Anisotropic Half-Metallic MnNF Monolayer.
- Authors: Hu Y, Li SS, Ji WX, Zhang CW, Ding M, Wang PJ, Yan SS
- Issue date: 2020 Jan 16
- Highly Anisotropic Dirac Fermions in Square Graphynes.
- Authors: Zhang LZ, Wang ZF, Wang ZM, Du SX, Gao HJ, Liu F
- Issue date: 2015 Aug 6
- Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
- Authors: Velbel MA, Cockell CS, Glavin DP, Marty B, Regberg AB, Smith AL, Tosca NJ, Wadhwa M, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Debaille V, Grady MM, Hauber E, Hutzler A, McCubbin FM, Pratt LM, Smith CL, Summons RE, Swindle TD, Tait KT, Udry A, Usui T, Westall F, Zorzano MP
- Issue date: 2022 Jun