Dominating Interlayer Resonant Energy Transfer in Type-II 2D Heterostructure
Name:
images_large_nn1c08798_0006.jpeg
Size:
109.3Kb
Format:
JPEG image
Description:
Graphical abstract
Type
ArticleAuthors
Karmakar, Arka
Al-Mahboob, Abdullah
Petoukhoff, Christopher E.
Kravchyna, Oksana
Chan, Nicholas S.
Taniguchi, Takashi

Watanabe, Kenji

Dani, Keshav M.
Date
2022-03-09Permanent link to this record
http://hdl.handle.net/10754/676704
Metadata
Show full item recordAbstract
Type-II heterostructures (HSs) are essential components of modern electronic and optoelectronic devices. Earlier studies have found that in type-II transition metal dichalcogenide (TMD) HSs, the dominating carrier relaxation pathway is the interlayer charge transfer (CT) mechanism. Here, this report shows that, in a type-II HS formed between monolayers of MoSe2 and ReS2, nonradiative energy transfer (ET) from higher to lower work function material (ReS2 to MoSe2) dominates over the traditional CT process with and without a charge-blocking interlayer. Without a charge-blocking interlayer, the HS area shows 3.6 times MoSe2 photoluminescence (PL) enhancement as compared to the MoSe2 area alone. In a completely encapsulated sample, the HS PL emission further increases by a factor of 6.4. After completely blocking the CT process, more than 1 order of magnitude higher MoSe2 PL emission was achieved from the HS area. This work reveals that the nature of this ET is truly a resonant effect by showing that in a similar type-II HS formed by ReS2 and WSe2, CT dominates over ET, resulting in a severely quenched WSe2 PL. This study not only provides significant insight into the competing interlayer processes but also shows an innovative way to increase the PL emission intensity of the desired TMD material using the ET process by carefully choosing the right material combination for HS.Citation
Karmakar, A., Al-Mahboob, A., Petoukhoff, C. E., Kravchyna, O., Chan, N. S., Taniguchi, T., Watanabe, K., & Dani, K. M. (2022). Dominating Interlayer Resonant Energy Transfer in Type-II 2D Heterostructure. ACS Nano, 16(3), 3861–3869. https://doi.org/10.1021/acsnano.1c08798Sponsors
A.K. acknowledges the useful discussion with Chakradhar Sahoo and the help received from Joel Pérez Urquizo in setting up the cryo-PL measurements. This work was supported by the funding from the Femtosecond Spectroscopy Unit at the Okinawa Institute of Science and Technology Graduate University. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant Number JPMXP0112101001) and JSPS KAKENHI (Grant Numbers 19H05790 and JP20H00354).Publisher
American Chemical Society (ACS)Journal
ACS NANOarXiv
2110.03492ae974a485f413a2113503eed53cd6c53
10.1021/acsnano.1c08798