Sodium pre-intercalated carbon/V2O5 constructed by sustainable sodium lignosulfonate for stable cathodes in zinc ion batteries: A comprehensive study.
Name:
ChemSusChem - 2022 - Chen - Sodium pre‐intercalated carbon V2O5 constructed by sustainable sodium lignosulfonate for stable.pdf
Size:
1.843Mb
Format:
PDF
Description:
Accepted Manuscript
Embargo End Date:
2023-05-06
Type
ArticleAuthors
Chen, JunliZhang, Wenli
Zhang, Xiaojun
Li, Ziyan
Ma, Jianhui
Zhao, Lei
Jian, Wenbin
Chen, Suli
Yin, Jian
Lin, Xuliang
Qin, Yanlin
Qiu, Xueqing
KAUST Department
Physical Science and Engineering (PSE) DivisionMaterial Science and Engineering Program
Date
2022-05-06Embargo End Date
2023-05-06Permanent link to this record
http://hdl.handle.net/10754/676664
Metadata
Show full item recordAbstract
Aqueous zinc ion battery (AZIB) has been widely investigated in recent years because of its advantages of green, safe and abundant raw materials. It is necessary to continue to study how to prepare cathode materials with excellent performance and high cycling stability toward future commercialization. In this work, we proposed a strategy that uses sodium lignosulfonate as both carbon and sodium source to obtain a sodium pre-intercalated vanadium oxide/carbon (VO/LSC) composite as the cathode of AZIB. The carbon matrix could improve the electronic conductivity of vanadium oxide, while the sodium lignosulfonate can provide sodium ions pre-intercalated into the layered vanadium oxide simultaneously. Through this strategy, we obtained a vanadium-based cathode materials with high stability and excellent rate capability. The VO/LSC cathode delivered high capacities of 350 and 112.8 mAh g -1 at 0.1 and 4.0 A g -1 resepectively. We selected zinc sulfate and zinc trifluoromethyl sulfonate as electrolytes respectively, and analyzed the influence of electrolytes on the performance of VO/LSC. What's more, we used the oxygen in the environment to oxidize the low-priced vanadium oxide to achieve a self-charging AZIB. This paper provide a valuable strategy for the design of vanadium-base cathode material for AZIB, which can broaden the research and application of AZIB.Citation
Chen, J., Zhang, W., Zhang, X., Li, Z., Ma, J., Zhao, L., Jian, W., Chen, S., Yin, J., Lin, X., Qin, Y., & Qiu, X. (2022). Sodium pre-intercalated carbon/V2O5 constructed by sustainable sodium lignosulfonate for stable cathodes in zinc ion batteries: A comprehensive study. ChemSusChem. Portico. https://doi.org/10.1002/cssc.202200732Sponsors
The authors acknowledge the financial support from the National Natural Science Foundation of China (22108044, 22078069), the Guangdong Basic and Applied Basic Research Foundation (No.2019B151502038),the Research and Development Program in Key Fields of Guangdong Province (2020B1111380002),the financial support from the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (2021GDKLPRB07).Publisher
WileyJournal
ChemSusChemPubMed ID
35522223Additional Links
https://onlinelibrary.wiley.com/doi/10.1002/cssc.202200732ae974a485f413a2113503eed53cd6c53
10.1002/cssc.202200732
Scopus Count
Related articles
- Regulating the Interlayer Spacing of Vanadium Oxide by In Situ Polyaniline Intercalation Enables an Improved Aqueous Zinc-Ion Storage Performance.
- Authors: Yin C, Pan C, Liao X, Pan Y, Yuan L
- Issue date: 2021 Aug 25
- An In Situ Artificial Cathode Electrolyte Interphase Strategy for Suppressing Cathode Dissolution in Aqueous Zinc Ion Batteries.
- Authors: Zhang L, Zhang B, Hu J, Liu J, Miao L, Jiang J
- Issue date: 2021 Jun
- Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries.
- Authors: Jiang Y, Lu J, Liu W, Xing C, Lu S, Liu X, Xu Y, Zhang J, Zhao B
- Issue date: 2022 Apr 20
- A Safe High-Performance All-Solid-State Lithium-Vanadium Battery with a Freestanding V<sub>2</sub>O<sub>5</sub> Nanowire Composite Paper Cathode.
- Authors: Zhang Y, Lai J, Gong Y, Hu Y, Liu J, Sun C, Wang ZL
- Issue date: 2016 Dec 21
- Yttrium Vanadium Oxide-Poly(3,4-ethylenedioxythiophene) Composite Cathode Material for Aqueous Zinc-Ion Batteries.
- Authors: Kumankuma-Sarpong J, Guo W, Fu Y
- Issue date: 2021 Sep