Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning
dc.contributor.author | Thafar, Maha A. | |
dc.contributor.author | Alshahrani, Mona | |
dc.contributor.author | Albaradei, Somayah | |
dc.contributor.author | Gojobori, Takashi | |
dc.contributor.author | Essack, Magbubah | |
dc.contributor.author | Gao, Xin | |
dc.date.accessioned | 2022-04-20T13:46:55Z | |
dc.date.available | 2022-04-20T13:46:55Z | |
dc.date.issued | 2022-03-19 | |
dc.identifier.citation | Thafar, M. A., Alshahrani, M., Albaradei, S., Gojobori, T., Essack, M., & Gao, X. (2022). Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-08787-9 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.pmid | 35306525 | |
dc.identifier.doi | 10.1038/s41598-022-08787-9 | |
dc.identifier.uri | http://hdl.handle.net/10754/676354 | |
dc.description.abstract | Drug-target interaction (DTI) prediction plays a crucial role in drug repositioning and virtual drug screening. Most DTI prediction methods cast the problem as a binary classification task to predict if interactions exist or as a regression task to predict continuous values that indicate a drug's ability to bind to a specific target. The regression-based methods provide insight beyond the binary relationship. However, most of these methods require the three-dimensional (3D) structural information of targets which are still not generally available to the targets. Despite this bottleneck, only a few methods address the drug-target binding affinity (DTBA) problem from a non-structure-based approach to avoid the 3D structure limitations. Here we propose Affinity2Vec, as a novel regression-based method that formulates the entire task as a graph-based problem. To develop this method, we constructed a weighted heterogeneous graph that integrates data from several sources, including drug-drug similarity, target-target similarity, and drug-target binding affinities. Affinity2Vec further combines several computational techniques from feature representation learning, graph mining, and machine learning to generate or extract features, build the model, and predict the binding affinity between the drug and the target with no 3D structural data. We conducted extensive experiments to evaluate and demonstrate the robustness and efficiency of the proposed method on benchmark datasets used in state-of-the-art non-structured-based drug-target binding affinity studies. Affinity2Vec showed superior and competitive results compared to the state-of-the-art methods based on several evaluation metrics, including mean squared error, rm2, concordance index, and area under the precision-recall curve. | |
dc.description.sponsorship | Supported by King Abdullah University of Science and Technology (KAUST) through grant awards Nos. BAS/1/1059-01-01, BAS/1/1624-01-01, FCC/1/1976-20-01, FCC/1/1976-26-01, URF/1/3450-01-01, REI/1/4216-01-01, REI/1/4437-01-01, REI/1/4473-01-01, and URF/1/4098-01-01 | |
dc.publisher | Springer Science and Business Media LLC | |
dc.relation.url | https://www.nature.com/articles/s41598-022-08787-9 | |
dc.rights | Archived with thanks to Scientific Reports under a Creative Commons license, details at: https://creativecommons.org/licenses/by/4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | |
dc.title | Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning | |
dc.type | Article | |
dc.contributor.department | Structural and Functional Bioinformatics Group | |
dc.contributor.department | Computer Science Program | |
dc.contributor.department | Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division | |
dc.contributor.department | Bioscience Program | |
dc.contributor.department | Computational Bioscience Research Center (CBRC) | |
dc.identifier.journal | Scientific Reports | |
dc.identifier.pmcid | PMC8934358 | |
dc.eprint.version | Publisher's Version/PDF | |
dc.contributor.institution | College of Computers and Information Technology, Taif University, Taif, Saudi Arabia | |
dc.contributor.institution | National Center for Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Saudi Arabia | |
dc.contributor.institution | Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia | |
dc.identifier.volume | 12 | |
dc.identifier.issue | 1 | |
kaust.person | Thafar, Maha A. | |
kaust.person | Albaradei, Somayah | |
kaust.person | Gojobori, Takashi | |
kaust.person | Essack, Magbubah | |
kaust.person | Gao, Xin | |
kaust.grant.number | BAS/1/1059-01-01 | |
kaust.grant.number | BAS/1/1624-01-01 | |
kaust.grant.number | FCC/1/1976-20-01 | |
kaust.grant.number | FCC/1/1976-26-01 | |
kaust.grant.number | REI/1/4216-01-01 | |
kaust.grant.number | REI/1/4437-01-01 | |
kaust.grant.number | REI/1/4473-01-01 | |
kaust.grant.number | URF/1/3450-01-01 | |
kaust.grant.number | URF/1/4098-01-01 | |
dc.relation.issupplementedby | github:MahaThafar/Affinity2Vec | |
dc.identifier.eid | 2-s2.0-85126778930 | |
refterms.dateFOA | 2022-04-20T13:48:24Z | |
display.relations | <b>Is Supplemented By:</b><br/> <ul><li><i>[Software]</i> <br/> Title: MahaThafar/Affinity2Vec: Drug-target binding affinity prediction using representation learning, graph mining, and machine learning. Publication Date: 2021-04-05. github: <a href="https://github.com/MahaThafar/Affinity2Vec" >MahaThafar/Affinity2Vec</a> Handle: <a href="http://hdl.handle.net/10754/676685" >10754/676685</a></a></li></ul> |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Bioscience Program
For more information visit: https://bese.kaust.edu.sa/study/Pages/Bioscience.aspx -
Structural and Functional Bioinformatics Group
For more information visit: https://sfb.kaust.edu.sa/Pages/Home.aspx -
Computer Science Program
For more information visit: https://cemse.kaust.edu.sa/cs -
Computational Bioscience Research Center (CBRC)
-
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/