• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Fully-integrated systems and self-powered gas sensors for sustainable environment monitoring

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ManiTejaVijjapuThesis.pdf
    Size:
    5.662Mb
    Format:
    PDF
    Description:
    Final Dissertation
    Embargo End Date:
    2023-02-08
    Download
    Type
    Dissertation
    Authors
    Vijjapu, Mani Teja cc
    Advisors
    Salama, Khaled N. cc
    Committee members
    Ooi, Boon S. cc
    Alshareef, Husam N. cc
    Persaud, Krishna cc
    Program
    Electrical and Computer Engineering
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2022-02
    Embargo End Date
    2023-02-08
    Permanent link to this record
    http://hdl.handle.net/10754/675469
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2023-02-08.
    Abstract
    Mobile devices for the personalized detection of health and environmental hazards are becoming the basis for futuristic sensing technologies. In recent decades, air and environmental pollution levels have risen globally. Therefore, environmental protection must be strengthened by developing sensors that detect pollutants. The monitoring of these pollutants with high spatial coverage requires inexpensive electronic gas sensors and self sustainable sensing systems that can be deployed everywhere. This dissertation reports on technological developments to provide solutions for inexpensive, compact, power efficient, and easily deployable toxic gas sensors and integrated systems using semiconducting metal-oxide thin-film transistors (TFTs). The first part of the dissertation introduces the fabrication and characterization of an amorphous indium gallium zinc oxide (IGZO) TFT as a toxic gas sensor. In contrast to existing metal-oxide gas sensors, which are active either with light activation or at high temperature, the developed IGZO TFT sensors are operable at room temperature and require only visible light activation to revive them after exposure to NO2. IGZO TFT sensors exhibited remarkable selectivity and sensitivity to low concentrations of nitrogen dioxide (NO2). The second part of the dissertation introduces the design and realization of the IGZO-based fully integrated gas detectors. Unlike existing gas-sensing systems, which have discrete hardware for signal conditioning, read-out, and data acquisition, the developed integrated detectors constitute thesemodules integrated using IGZO TFT technology. The integrated detectors detect ambient NO2 gas and generate a digital output that is proportional to the ambient gas concentrations. Two types of integrated gas detectors were developed that differ in their mode of operation and circuitry design. These detectors are scalable and pave the way for portable systems to realize various gas-sensing applications, including smart cities and sustainable ecosystems. The success of personalized monitoring devices relies on the following factors: minimum power consumption, selectivity, and stability under extreme conditions that determine overall performance. One of the best solutions to minimize power consumption in these devices is to have a complementary energy-harvesting feature. Hence, the dissertation concludes with the design of self-powered sensors, which are IGZO sensors with self-powering capabilities. Self-powered sensors are p-n heterojunction sensors, developed using IGZO and hybrid-perovskites.
    Citation
    Vijjapu, M. T. (2022). Fully-integrated systems and self-powered gas sensors for sustainable environment monitoring. KAUST Research Repository. https://doi.org/10.25781/KAUST-370ZA
    DOI
    10.25781/KAUST-370ZA
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-370ZA
    Scopus Count
    Collections
    PhD Dissertations; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.