• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Target-enclosing inversion using an interferometric objective function

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    IFWI.pdf
    Size:
    4.219Mb
    Format:
    PDF
    Description:
    Submitted Version
    Download
    Type
    Article
    Authors
    Zheglova, Polina
    Ravasi, Matteo cc
    Vasconcelos, Ivan
    Malcolm, Alison
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2017-01-17
    Permanent link to this record
    http://hdl.handle.net/10754/675046
    
    Metadata
    Show full item record
    Abstract
    Full waveform inversion is a high-resolution subsurface imaging technique, in which full seismic waveforms are used to infer subsurface physical properties. We present a novel, target-enclosing, full-waveform inversion framework based on an interferometric objective function. This objective function exploits the equivalence between the convolution and correlation representation formulas, using data from a closed boundary around the target area of interest. Because such equivalence is violated when the knowledge of the enclosed medium is incorrect, we propose to minimize the mismatch between the wavefields independently reconstructed by the two representation formulas. The proposed method requires only kinematic knowledge of the subsurface model, specifically the overburden for redatuming, and does not require prior knowledge of the model below the target area. In this sense it is truly local: sensitive only to the medium parameters within the chosen target, with no assumptions about the medium or scattering regime outside the target. We present the theoretical framework and derive the gradient of the new objective function via the adjoint-state method and apply it to a synthetic example with exactly redatumed wavefields.
    Sponsors
    The authors thank King Abdullah University of Science and Technology (KAUST) for funding this work. For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia. Alison Malcolm thanks NSERC, Chevron and InnovateNL for funding.
    Publisher
    Oxford Academic
    Journal
    Geophysical Journal International
    Collections
    Articles; Physical Science and Engineering (PSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.