Show simple item record

dc.contributor.authorBertrandie, Jules
dc.contributor.authorSharma, Anirudh
dc.contributor.authorGasparini, Nicola
dc.contributor.authorRosas Villalva, Diego
dc.contributor.authorPaleti, Sri Harish Kumar
dc.contributor.authorWehbe, Nimer
dc.contributor.authorTroughton, Joel
dc.contributor.authorBaran, Derya
dc.date.accessioned2022-01-12T13:53:43Z
dc.date.available2022-01-12T13:53:43Z
dc.date.issued2022-01-10
dc.date.submitted2021-10-31
dc.identifier.citationBertrandie, J., Sharma, A., Gasparini, N., Villalva, D. R., Paleti, S. H. K., Wehbe, N., … Baran, D. (2022). Air-Processable and Thermally Stable Hole Transport Layer for Non-Fullerene Organic Solar Cells. ACS Applied Energy Materials. doi:10.1021/acsaem.1c03378
dc.identifier.issn2574-0962
dc.identifier.issn2574-0962
dc.identifier.doi10.1021/acsaem.1c03378
dc.identifier.urihttp://hdl.handle.net/10754/674940
dc.description.abstractPower conversion efficiencies (PCEs) of organic solar cells (OSCs) have now surpassed 19%. This has led to an increased focus on developing devices using methods and materials that are scalable, processable under ambient air atmospheres, and stable. However, current materials fall short of the essential requirements for stability and processability needed for cost-effective large-scale fabrication of high-performing OSCs. Here, we report a hybrid solution-processable hole transport layer (HTL) based on tantalum-doped tungsten oxide (TaWOx) nanoparticles and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) demonstrating good wettability over the hydrophobic active layer. N-i-p-type OSCs that are processed fully under ambient conditions, based on a polymer donor and a non-fullerene acceptor incorporating a combined TaWOx-PEDOT:PSS layer as HTL deliver a power conversion efficiency of 8.6%. OSCs utilizing the TaWOx-PEDOT:PSS HTL demonstrate improved thermal stability compared to devices based on the previously reported solution-processed MoOx-PEDOT:PSS HTL, which was found to severely degrade upon thermal treatment at 85 °C. Photoelectron spectroscopy and secondary ion mass spectrometry (SIMS) reveal that the MoOx-PEDOT:PSS HTL is prone to thermally induced intermixing with the underlying active layer, resulting in unfavorable changes in the interfacial energetics. No significant heat-induced changes are observed in the case of the TaWOx-PEDOT:PSS HTL when annealed up to 120 °C, imparting enhanced thermal stability to the devices. Improved wettability on hydrophobic surfaces, combined with air processability and enhanced thermal stability makes TaWOx-PEDOT:PSS a promising HTL material for fabricating stable NFA solar cells using roll-to-roll compatible printing and coating methods.
dc.description.sponsorshipThis publication is based on work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2018-KAUST-KAU Initiative-3902 and OSR-2019-CARF/CCF-3079. Authors thank Abdulrahman El Labban for performing SEM measurements.
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acsaem.1c03378
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Energy Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsaem.1c03378.
dc.titleAir-Processable and Thermally Stable Hole Transport Layer for Non-Fullerene Organic Solar Cells
dc.typeArticle
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentSurface Science
dc.contributor.departmentMaterial Science and Engineering Program
dc.identifier.journalACS Applied Energy Materials
dc.rights.embargodate2023-01-10
dc.eprint.versionPost-print
kaust.personBertrandie, Jules
kaust.personSharma, Anirudh
kaust.personGasparini, Nicola
kaust.personVillalva, Diego Rosas
kaust.personPaleti, Sri Harish K.
kaust.personWehbe, Nimer
kaust.personTroughton, Joel
kaust.personBaran, Derya
kaust.grant.numberOSR-2018-KAUST-KAU Initiative-3902
kaust.grant.numberOSR-2019-CARF/CCF-3079
dc.date.accepted2021-12-21
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)


This item appears in the following Collection(s)

Show simple item record