Show simple item record

dc.contributor.authorRuzayqat, Hamza Mahmoud
dc.contributor.authorJasra, Ajay
dc.date.accessioned2022-01-02T06:08:23Z
dc.date.available2022-01-02T06:08:23Z
dc.date.issued2021-12-27
dc.identifier.urihttp://hdl.handle.net/10754/674287
dc.description.abstractWe consider the problem of static Bayesian inference for partially observed Lévy-process models. We develop a methodology which allows one to infer static parameters and some states of the process, without a bias from the time-discretization of the afore-mentioned Lévy process. The unbiased method is exceptionally amenable to parallel implementation and can be computationally efficient relative to competing approaches. We implement the method on S &P 500 log-return daily data and compare it to some Markov chain Monte Carlo (MCMC) algorithms.
dc.description.sponsorshipHR & AJ were supported by KAUST baseline funding.
dc.publisherarXiv
dc.relation.urlhttps://arxiv.org/pdf/2112.13874.pdf
dc.rightsArchived with thanks to arXiv
dc.subjectUnbiased inference
dc.subjectLévy process
dc.subjectmultilevel/sequential Monte Carlo methods.
dc.subjectDebiasing schemes
dc.titleUnbiased Parameter Inference for a Class of Partially Observed Lévy-Process Models
dc.typePreprint
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Science and Engineering (CEMSE) Division
dc.eprint.versionPre-print
dc.identifier.arxivid2112.13874
kaust.personRuzayqat, Hamza Mahmoud
kaust.personJasra, Ajay
refterms.dateFOA2022-01-02T06:08:24Z
kaust.acknowledged.supportUnitKAUST baseline funding


Files in this item

Thumbnail
Name:
2112.13874.pdf
Size:
705.9Kb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record