Show simple item record

dc.contributor.authorHe, Xupeng
dc.contributor.authorAlsinan, Marwa
dc.contributor.authorKwak, Hyung
dc.contributor.authorHoteit, Hussein
dc.date.accessioned2021-12-22T07:19:28Z
dc.date.available2021-12-22T07:19:28Z
dc.date.issued2021-12-15
dc.identifier.citationHe, X., Alsinan, M., Kwak, H., & Hoteit, H. (2021). High-Resolution Micro-Continuum Approach to Model Matrix-Fracture Interaction and Fluid Leakage. Day 4 Wed, December 01, 2021. doi:10.2118/204531-ms
dc.identifier.doi10.2118/204531-ms
dc.identifier.urihttp://hdl.handle.net/10754/674146
dc.description.abstractUnderstanding the fundamental mechanism of fracture-matrix fluid exchange is crucial for the modeling of fractured reservoirs. Traditionally, high-resolution simulations for flow in fractures often neglect the matrix-fracture leakage influence on the fracture hydraulic properties, i.e., assuming impermeable fracture walls. This work introduces a micro-continuum approach to capture the matrix-fracture leakage interaction and its effect on the rock fractures’ hydraulic properties. Because of the multiscale nature of fractured media, full physics Navier-Stokes (NS) representation everywhere in the whole domain is not feasible. We thus employ NS equations to describe the flow in the fracture, and Darcy’s law to model the flow in the surrounding porous rocks. Such hybrid modeling is achieved using the extended Darcy-Brinkman-Stokes (DBS) equation. With this approach, a unified conservation equation for flow in both media is applied by choosing appropriate parameters (e.g., porosity and permeability) for the corresponding domains. We apply an accurate Mixed Finite Element approach to solve the extended DBS equation. Various sensitivity analyses are conducted to explore the leakage effects on the fracture hydraulic properties by varying surrounding matrix permeability, fracture roughness, and Reynolds number (Re). Streamline profiles show the presence of back-flow phenomena, where in-flow and out-flow are possible between the matrix and the fractures. Further, zones of stagnant (eddy) flow are observed around locations with large asperities of sharp corners under high Re conditions. Numerical results show the significant effects of roughness and inertia on flow predictions in fractures for both impermeable and leaky wall cases. Besides, the side-leakage effect can create non-uniform flow behavior within the fracture that may differ significantly from the case with impermeable wall conditions. And this matrix-fracture leakage influence on hydraulic properties of rock fractures matters especially for cases with high matrix permeability, high fracture roughness, and low Re values. In summary, we present a high-resolution micro-continuum approach to explore the flow exchange behavior between the fracture and rock matrix, and further investigate the static and dynamic effects, including variable Reynold numbers, mimicking flow near and away from the wellbore. The approach and results provide significant insights into the flow of fluids through fractures within permeable rocks and can be readily applied in field-scale reservoir simulations.
dc.description.sponsorshipWe would like to thank Saudi Aramco for funding this research. We would also like to thank King Abdullah University of Science and Technology (KAUST) for providing license for MATLAB.
dc.publisherSPE
dc.relation.urlhttps://onepetro.org/SPEMEOS/proceedings/21MEOS/4-21MEOS/D041S040R006/474418
dc.rightsArchived with thanks to SPE
dc.titleHigh-Resolution Micro-Continuum Approach to Model Matrix-Fracture Interaction and Fluid Leakage
dc.typeConference Paper
dc.contributor.departmentEnergy Resources & Petroleum Engineering
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentEnergy Resources and Petroleum Engineering Program
dc.contributor.departmentAli I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
dc.conference.dateNovember 28–December 1, 2021
dc.conference.nameSPE Middle East Oil & Gas Show and Conference
dc.eprint.versionPost-print
dc.contributor.institutionSaudi Aramco
kaust.personHe, Xupeng
kaust.personHoteit, Hussein
refterms.dateFOA2021-12-22T12:01:52Z
dc.date.published-online2021-12-15
dc.date.published-print2021-12-15


Files in this item

Thumbnail
Name:
High-Resolution Micro-Continuum Approach to Model Matrix-Fracture Interaction and Fluid Leakage.pdf
Size:
1.098Mb
Format:
PDF
Description:
Post-print

This item appears in the following Collection(s)

Show simple item record