• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Production of Linear Alpha Olefins via Heterogeneous Metal-OrganicFramework (MOF) Catalysts

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    is-Dissertation-Word-Mohammed_Alalouni-November-26-2021-V29.docx.pdf
    Size:
    5.014Mb
    Format:
    PDF
    Description:
    Mohammed Rafat Al Alouni - Final Paper
    Download
    View more filesView fewer files
    Type
    Dissertation
    Authors
    Alalouni, Mohammed R. cc
    Advisors
    Han, Yu cc
    Committee members
    Pinnau, Ingo cc
    Castaño, Pedro cc
    Huang, Kuo-Wei cc
    Yan, Ning cc
    Program
    Chemical Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2021-12
    Embargo End Date
    2022-12-31
    Permanent link to this record
    http://hdl.handle.net/10754/673959
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2022-12-31.
    Abstract
    Linear Alpha Olefins (LAOs) are one of the most important commodities in the chemical industry, which are currently mainly produced via homogenous catalytic processes. Heterogeneous catalysts have always been desirable from an industrial viewpoint due to their advantages of low operation cost, ease of separation, and catalyst reusability. However, the development of highly active, selective, and stable heterogeneous catalysts for the production of LAOs has been a challenge throughout the last 60 years. In this dissertation, we designed and prepared a series of heterogeneous catalysts by incorporating structural moieties of homogenous benchmark catalysts into metal-organic-frameworks (MOFs), aiming to provide a feasible solution to this long-standing challenge. First, we reviewed the background and state of the art of this field and put forward the main objectives of our research. Then, we thoroughly discussed a novel heterogeneous catalyst (Ni-ZIF-8) that we developed for ethylene dimerization to produce 1-butene, focusing on its designed principle, detailed characterizations, catalytic performance evaluation, and reaction mechanisms. Ni-ZIF-8 exhibits an average ethylene turnover frequency greater than 1,000,000 h$^{-1}$ (1-butene selectivity >85%), far exceeding the activities of previously reported heterogeneous and many homogenous catalysts under similar conditions. Compared with homogenous nickel catalysts, Ni-ZIF-8 has significantly higher stability and showed constant activity during four hours of continuous reaction for at least two reaction cycles. The combination of isotopic labeling studies and Density Functional Theory calculations demonstrated that ethylene dimerization on Ni-ZIF-8 follows the Cossee-Arlman mechanism, and that the full exposure and square-planer coordination of the nickel sites account for the observed high activity. After that, we further optimized the Ni-ZIF-8 catalytic system from the perspective of practical applications. We achieved double productivity of 1-butene by optimizing the synthetic conditions and explored its usability and performances under solvent-free conditions. Then, we extended our catalyst design concept to prepare heterogeneous catalysts comprising other metals and MOFs, which provided a suitable platform for studying the effects of the metallic center and coordination environment on the catalytic production of LAOs. Finally, we gave our perspectives on the further development of heterogeneous catalysts for the production of LAOs.
    Citation
    Alalouni, M. R. (2021). Production of Linear Alpha Olefins via Heterogeneous Metal-OrganicFramework (MOF) Catalysts. KAUST Research Repository. https://doi.org/10.25781/KAUST-4WM2H
    DOI
    10.25781/KAUST-4WM2H
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-4WM2H
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Chemical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.