Type
ArticleKAUST Department
Biological and Environmental Science and Engineering (BESE) DivisionEnvironmental Science and Engineering Program
Interfacial Lab
Physical Science and Engineering (PSE) Division
Water Desalination and Reuse Research Center (WDRC)
Date
2021-12Permanent link to this record
http://hdl.handle.net/10754/673956
Metadata
Show full item recordAbstract
The Leidenfrost phenomenon entails the levitation of a liquid droplet over a superheated surface, cushioned by its vapor layer. This vapor layer can obstruct boiling heat transfer in heat exchangers, thereby compromising energy efficiency and safety. For water, superhydrophobic surfaces are believed to reduce the Leidenfrost point (TL)—the temperature at which this phenomenon occurs. Therefore, superhydrophobic surfaces are not commonly utilized in thermal machinery despite their benefits such as reducing frictional drag. Here, we demonstrate that it is possible to achieve superhydrophobicity without lowering TL by surface engineering and fine-tuning liquid–solid adhesion. We demonstrate that TL of water on superhydrophobic surfaces comprising doubly reentrant pillars (DRPs) can exceed that on hydrophilic and even superhydrophilic surfaces. Via theory and computation, we disentangle the contributions of microtexture, heat transfer, and surface chemistry on the onset of the Leidenfrost phenomenon. Remarkably, coating-free and superhydrophobic DRP architecture can facilitate ∼300% greater heat transfer to water droplets at 200 °C in comparison with conventional superhydrophobic surfaces. These findings advance our understanding of the Leidenfrost phenomenon and herald technological applications of superhydrophobic surfaces in thermal machinery.Citation
Shi, M., Das, R., Arunachalam, S., & Mishra, H. (2021). Suppression of Leidenfrost effect on superhydrophobic surfaces. Physics of Fluids, 33(12), 122104. doi:10.1063/5.0064040Sponsors
The co-authors acknowledge research funding from King Abdullah University of Science and Technology (KAUST). M.S. thanks Professor Sigurdur Thoroddsen from KAUST and Professor Shangsheng Feng from Xi'an Jiaotong University for fruitful discussions.Publisher
AIP PublishingJournal
Physics of FluidsAdditional Links
https://aip.scitation.org/doi/10.1063/5.0064040ae974a485f413a2113503eed53cd6c53
10.1063/5.0064040