Coupling Plasmonic Pt Nanoparticles with AlGaN Nanostructures for Enhanced Broadband Photoelectrochemical-Detection Applications
Type
ArticleAuthors
Kang, YangWang, Danhao

Fang, Shi
Liu, Xin
Yu, Huabin
Jia, Hongfeng
Zhang, Haochen
Luo, Yuanmin
Ooi, Boon S.

He, Jr-Hau

Sun, Haiding

Long, Shibing
KAUST Department
Computer, Electrical and Mathematical Science and Engineering (CEMSE) DivisionElectrical and Computer Engineering Program
Photonics Laboratory
Date
2021-12-02Embargo End Date
2022-12-02Permanent link to this record
http://hdl.handle.net/10754/673954
Metadata
Show full item recordAbstract
Coupling the plasmonic metals with semiconductors often induces strong charge and energy transfer across heterointerfaces, offering an unprecedented opportunity to break the fundamental limit of semiconductor optoelectronic devices. Herein, we demonstrate a broadened photodetection bandwidth with drastically enhanced photoresponsivity of photoelectrochemical cells by coupling the plasmonic–platinum nanoparticles with p-type AlGaN-semiconductor nanostructures. Benefiting from the localized surface plasmon resonance at the platinum-AlGaN nanostructure interface, our devices exhibit a striking 3 orders of magnitude boost of the photoresponsivity in the visible band, which is barely attainable in pristine wide band gap semiconductors. Simultaneously, a nearly sevenfold enhancement of the photoresponsivity can also be achieved under 254 nm light illumination, demonstrating high-responsive deep ultraviolet-sensitive broad-bandwidth photodetection. Most importantly, the proposed plasmon-induced metal/semiconductor hybrid nanoarchitectures, by embracing a diversity of plasmonic metals combined with the wide tunable band gap of the group III-nitride semiconductors via synergy of the plasmonic–photoelectric effect, show significant promise in designing specific wavelength-dominance broadband photosensing systems of the future.Citation
Kang, Y., Wang, D., Fang, S., Liu, X., Yu, H., Jia, H., … Long, S. (2021). Coupling Plasmonic Pt Nanoparticles with AlGaN Nanostructures for Enhanced Broadband Photoelectrochemical-Detection Applications. ACS Applied Nano Materials. doi:10.1021/acsanm.1c03239Sponsors
This work was funded by the National Natural Science Foundation of China (grant no. 61905236), the Fundamental Research Funds for the Central Universities (grant no. WK2100230020), USTC Research Funds of the Double First-Class Initiative (grant no. YD3480002002), and City University of Hong Kong (grant no. 9380107) and was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.Publisher
American Chemical Society (ACS)Journal
ACS Applied Nano MaterialsAdditional Links
https://pubs.acs.org/doi/10.1021/acsanm.1c03239ae974a485f413a2113503eed53cd6c53
10.1021/acsanm.1c03239