• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    23.51Mb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Hamdi, Abdullah cc
    Giancola, Silvio
    Ghanem, Bernard cc
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Electrical and Computer Engineering Program
    VCC Analytics Research Group
    Visual Computing Center (VCC)
    Date
    2021-11-30
    Permanent link to this record
    http://hdl.handle.net/10754/673933
    
    Metadata
    Show full item record
    Abstract
    Multi-view projection methods have demonstrated promising performance on 3D understanding tasks like 3D classification and segmentation. However, it remains unclear how to combine such multi-view methods with the widely available 3D point clouds. Previous methods use unlearned heuristics to combine features at the point level. To this end, we introduce the concept of the multi-view point cloud (Voint cloud), representing each 3D point as a set of features extracted from several view-points. This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation. Naturally, we can equip this new representation with convolutional and pooling operations. We deploy a Voint neural network (VointNet) with a theoretically established functional form to learn representations in the Voint space. Our novel representation achieves state-of-the-art performance on 3D classification and retrieval on ScanObjectNN, ModelNet40, and ShapeNet Core55. Additionally, we achieve competitive performance for 3D semantic segmentation on ShapeNet Parts. Further analysis shows that VointNet improves the robustness to rotation and occlusion compared to other methods.
    Publisher
    arXiv
    arXiv
    2111.15363
    Additional Links
    https://arxiv.org/pdf/2111.15363.pdf
    Collections
    Preprints; Electrical and Computer Engineering Program; Visual Computing Center (VCC); Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.