• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Deep Learning Action Anticipation for Real-time Control of Water Valves: Wudu use case

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Abdulwahab_Felemban_Masters_Thesis_LaTeX_November (3).pdf
    Size:
    2.434Mb
    Format:
    PDF
    Description:
    Final Thesis
    Download
    Type
    Thesis
    Authors
    Felemban, Abdulwahab A. cc
    Advisors
    Al-Naffouri, Tareq Y. cc
    Committee members
    Ghanem, Bernard cc
    Elhoseiny, Mohamed H.
    Bader, Ahmed
    Masood, Mudassir cc
    Program
    Electrical and Computer Engineering
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2021-12
    Embargo End Date
    2022-11-30
    Permanent link to this record
    http://hdl.handle.net/10754/673882
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2022-11-30.
    Abstract
    Human-machine interaction could support many daily activities in making it more convenient. The development of smart devices has flourished the underlying smart systems that process smart and personalized control of devices. The first step in controlling any device is observation; through understanding the surrounding environment and human activity, a smart system can physically control a device. Human activity recognition (HAR) is essential in many smart applications such as self-driving cars, human-robot interaction, and automatic systems such as infrared (IR) taps. For human-centric systems, there are some requirements to perform a physical task in real-time. For human-machine interactions, the anticipation of human actions is essential. IR taps have delay limitations because of the proximity sensor that signals the solenoid valve only when the user’s hands are exactly below the tap. The hardware and electronics delay causes inconvenience in use and water waste. In this thesis, an alternative control based on deep learning action anticipation is proposed. Humans interact with taps for various tasks such as washing hands, face, brushing teeth, just to name a few. We focus on a small subset of these activities. Specifically, we focus on the activities carried out sequentially during an Islamic cleansing ritual called Wudu. Skeleton modality is widely used in HAR because of having abstract information that is scale-invariant and robust against imagery variances. We used depth cameras to obtain accurate 3D human skeletons of users performing Wudu. The sequences were manually annotated with ten atomic action classes. This thesis investigated the use of different Deep Learning networks with architectures optimized for real-time action anticipation. The proposed methods were mainly based on the Spatial-Temporal Graph Convolutional Network. With further improvements, we proposed a Gated Recurrent Unit (GRU) model with Spatial-Temporal Graph Convolution Network (ST-GCN) backbone to extract local temporal features. The GRU process the local temporal latent features sequentially to predict future actions. The proposed models scored 94.14% recall on binary classification to turn on and off the water tap. And higher than 81.58-89.08% recall on multiclass classification.
    Citation
    Felemban, A. A. (2021). Deep Learning Action Anticipation for Real-time Control of Water Valves: Wudu use case. KAUST Research Repository. https://doi.org/10.25781/KAUST-0G21G
    DOI
    10.25781/KAUST-0G21G
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-0G21G
    Scopus Count
    Collections
    MS Theses; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.