Oriented Two-Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport.
Name:
Oriented_ange.202113141.pdf
Size:
1.396Mb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2022-11-23
Type
ArticleAuthors
Cao, Li
Liu, Xiaowei

Shinde, Digambar B
Chen, Cailing

Chen, I-Chun
Li, Zhen

Zhou, Zongyao

Yang, Zhongyu
Han, Yu

Lai, Zhiping

KAUST Department
Advanced Membranes and Porous Materials Research CenterKing Abdullah University of Science and Technology Chemical Engineering 4700 KAUST 23955-6900 Thuwal SAUDI ARABIA
Environmental Science and Engineering
Biological and Environmental Science and Engineering (BESE) Division
Chemical Science Program
Physical Science and Engineering (PSE) Division
Chemical Engineering Program
KAUST Grant Number
BAS/1/1375-01FCC/1/1972-19
Date
2021-11-24Embargo End Date
2022-11-23Submitted Date
2021-09-28Permanent link to this record
http://hdl.handle.net/10754/673771
Metadata
Show full item recordAbstract
Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two-dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2-3 orders of magnitude higher ion flux compared with that of conventional single-channel nanofluidic devices. The surface-charge-governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH-responsivity of imine and phenol hydroxyl groups, the COF-DT membranes attained an actively modulable ion transport with a high pH-gating on/off ratio of ~100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.Citation
Cao, L., Liu, X., Shinde, D. B., Chen, C., Chen, I.-C., Li, Z., … Lai, Z. (2021). Oriented Two-Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angewandte Chemie International Edition. doi:10.1002/anie.202113141Sponsors
This work was supported by the KAUST Centre Competitive Fund FCC/1/1972-19 and KAUST baseline fund BAS/1/1375-01Publisher
WileyJournal
Angewandte ChemiePubMed ID
34816574Additional Links
https://onlinelibrary.wiley.com/doi/10.1002/anie.202113141ae974a485f413a2113503eed53cd6c53
10.1002/anie.202113141
Scopus Count
Related articles
- Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes.
- Authors: Cao L, Chen IC, Chen C, Shinde DB, Liu X, Li Z, Zhou Z, Zhang Y, Han Y, Lai Z
- Issue date: 2022 Jul 13
- Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
- Authors: Xin W, Jiang L, Wen L
- Issue date: 2021 Nov 16
- Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
- Authors: Guo W, Tian Y, Jiang L
- Issue date: 2013 Dec 17
- Voltage-Gated Ion Transport in Two-Dimensional Sub-1 nm Nanofluidic Channels.
- Authors: Wang Y, Zhang H, Kang Y, Zhu Y, Simon GP, Wang H
- Issue date: 2019 Oct 22
- Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks.
- Authors: Lu J, Zhang H, Hu X, Qian B, Hou J, Han L, Zhu Y, Sun C, Jiang L, Wang H
- Issue date: 2021 Jan 26