Show simple item record

dc.contributor.authorPham, Tony
dc.contributor.authorForrest, Katherine A.
dc.contributor.authorGao, Wen-Yang
dc.contributor.authorMa, Shengqian
dc.contributor.authorSpace, Brian
dc.date.accessioned2021-11-03T07:20:06Z
dc.date.available2021-11-03T07:20:06Z
dc.date.issued2015
dc.identifier.citationPham, T., Forrest, K. A., Gao, W.-Y., Ma, S., & Space, B. (2015). Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels inrht-Metal-Organic Frameworks. ChemPhysChem, 16(15), 3170–3179. doi:10.1002/cphc.201500504
dc.identifier.issn1439-7641
dc.identifier.issn1439-4235
dc.identifier.doi10.1002/cphc.201500504
dc.identifier.urihttp://hdl.handle.net/10754/673080
dc.description.abstractTheoretical investigations of CO2 sorption are performed in four members of the highly tunable rht-metal-organic framework (MOF) platform. rht-MOFs contain two Cu2+ ions that comprise the metal paddlewheels and both are in chemically distinct environments. Indeed, one type of Cu2+ ion faces toward the center of the linker whereas the other type faces away from the center of the linker. Electronic structure calculations on the series of rht-MOFs demonstrate that one of the Cu2+ ions has a consistently higher charge magnitude relative to the other. As a consequence, the Cu2+ ion with the higher partial positive charge acts as the favored sorbate binding site at initial loading as revealed by grand canonical Monte Carlo (GCMC) simulations that include many-body polarization. It was found that the charge distribution about the copper paddlewheels is dependent on the type of functional groups present on the linker. This study demonstrates how the binding site about the metal paddlewheels in the rht-MOF platform can be controlled by changing the functionality on the organic ligand.
dc.description.sponsorshipThis work was supported by the National Science Foundation (Award No. CHE-1152362). Computations were performed under an XSEDE Grant (No. TG-DMR090028) to B.S. This publication is also based on work supported by Award No. FIC/2010/06, made by King Abdullah University of Science and Technology (KAUST). The authors also thank the Space Foundation (Basic and Applied Research) for partial support. The authors would like to acknowledge the use of the services provided by Research Computing at the University of South Florida.
dc.publisherWILEY-V C H VERLAG GMBH
dc.relation.urlhttp://doi.wiley.com/10.1002/cphc.201500504
dc.subjectcopper
dc.subjectmetal-organic frameworks
dc.subjectMonte Carlo simulations
dc.subjectpartial charges
dc.subjectpolarization
dc.titleTheoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht-Metal-Organic Frameworks
dc.typeArticle
dc.identifier.journalCHEMPHYSCHEM
dc.identifier.wosutWOS:000363422600008
dc.contributor.institutionUniv S Florida, Dept Chem, Tampa, FL 33620 USA
dc.identifier.volume16
dc.identifier.issue15
dc.identifier.pages3170-3179
kaust.grant.numberFIC/2010/06
dc.identifier.eid2-s2.0-84945453505
kaust.acknowledged.supportUnitResearch Computing


This item appears in the following Collection(s)

Show simple item record