Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht-Metal-Organic Frameworks
Type
ArticleKAUST Grant Number
FIC/2010/06Date
2015Permanent link to this record
http://hdl.handle.net/10754/673080
Metadata
Show full item recordAbstract
Theoretical investigations of CO2 sorption are performed in four members of the highly tunable rht-metal-organic framework (MOF) platform. rht-MOFs contain two Cu2+ ions that comprise the metal paddlewheels and both are in chemically distinct environments. Indeed, one type of Cu2+ ion faces toward the center of the linker whereas the other type faces away from the center of the linker. Electronic structure calculations on the series of rht-MOFs demonstrate that one of the Cu2+ ions has a consistently higher charge magnitude relative to the other. As a consequence, the Cu2+ ion with the higher partial positive charge acts as the favored sorbate binding site at initial loading as revealed by grand canonical Monte Carlo (GCMC) simulations that include many-body polarization. It was found that the charge distribution about the copper paddlewheels is dependent on the type of functional groups present on the linker. This study demonstrates how the binding site about the metal paddlewheels in the rht-MOF platform can be controlled by changing the functionality on the organic ligand.Citation
Pham, T., Forrest, K. A., Gao, W.-Y., Ma, S., & Space, B. (2015). Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels inrht-Metal-Organic Frameworks. ChemPhysChem, 16(15), 3170–3179. doi:10.1002/cphc.201500504Sponsors
This work was supported by the National Science Foundation (Award No. CHE-1152362). Computations were performed under an XSEDE Grant (No. TG-DMR090028) to B.S. This publication is also based on work supported by Award No. FIC/2010/06, made by King Abdullah University of Science and Technology (KAUST). The authors also thank the Space Foundation (Basic and Applied Research) for partial support. The authors would like to acknowledge the use of the services provided by Research Computing at the University of South Florida.Publisher
WILEY-V C H VERLAG GMBHJournal
CHEMPHYSCHEMAdditional Links
http://doi.wiley.com/10.1002/cphc.201500504ae974a485f413a2113503eed53cd6c53
10.1002/cphc.201500504