Show simple item record

dc.contributor.authorIp, Alexander H.
dc.contributor.authorKiani, Amirreza
dc.contributor.authorKramer, Iilan J.
dc.contributor.authorVoznyy, Oleksandr
dc.contributor.authorMovahed, Hamidreza F.
dc.contributor.authorLevina, Larissa
dc.contributor.authorAdachi, Michael M.
dc.contributor.authorHoogland, Sjoerd
dc.contributor.authorSargent, Edward H.
dc.date.accessioned2021-11-03T07:12:34Z
dc.date.available2021-11-03T07:12:34Z
dc.date.issued2015
dc.identifier.citationIp, A. H., Kiani, A., Kramer, I. J., Voznyy, O., Movahed, H. F., Levina, L., … Sargent, E. H. (2015). Infrared Colloidal Quantum Dot PhotovoltaicsviaCoupling Enhancement and Agglomeration Suppression. ACS Nano, 9(9), 8833–8842. doi:10.1021/acsnano.5b02164
dc.identifier.issn1936-086X
dc.identifier.issn1936-0851
dc.identifier.doi10.1021/acsnano.5b02164
dc.identifier.urihttp://hdl.handle.net/10754/673078
dc.description.abstractMaterials optimized for single-junction solar spectral harvesting, such as silicon, perovskites, and large-band-gap colloidal quantum dot solids, fail to absorb the considerable infrared spectral energy that lies below their respective band gap. Here we explore through modeling and experiment the potential for colloidal quantum dots (CQDs) to augment the performance of solar cells by harnessing transmitted light in the infrared. Through detailed balance modeling, we identify the CQD band gap that is best able to augment wafer-based, thin-film, and also solution-processed photovoltaic (PV) materials. The required quantum dots, with an excitonic peak at 1.3 μm, have not previously been studied in depth for solar performance. Using computational studies we find that a new ligand scheme distinct from that employed in better-explored 0.95 μm band gap PbS CQDs is necessary; only via the solution-phase application of a short bromothiol can we prevent dot fusion during ensuing solid-state film treatments and simultaneously offer a high valence band-edge density of states to enhance hole transport. Photoluminescence spectra and transient studies confirm the desired narrowed emission peaks and reduced surface-trap-associated decay. Electronic characterization reveals that only through the use of the bromothiol ligands is strong hole transport retained. The films, when used to make PV devices, achieve the highest AM1.5 power conversion efficiency yet reported in a solution-processed material having a sub-1 eV band gap.
dc.description.sponsorshipThis publication was based in part on work supported by Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. This research is supported in part by the IBM Canada Research and Development Center. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto. The authors would like to thank R. Comin, G. Walters, E. Yassitepe, F. P. G. de Arguer, Z. Yang, A. Labelle, L. Rollny, D. Zhitomirsky, and G. Moreno-Bautista for their help throughout the course of this study.
dc.publisherAMER CHEMICAL SOC
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acsnano.5b02164
dc.subjectcolloidal quantum dots
dc.subjectphotovoltaics
dc.subjectinfrared-absorbing solar cell
dc.subjectsmall band gap
dc.titleInfrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression
dc.typeArticle
dc.identifier.journalACS NANO
dc.identifier.wosutWOS:000361935800021
dc.contributor.institutionUniv Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 364, Canada
dc.identifier.volume9
dc.identifier.issue9
dc.identifier.pages8833-8842
kaust.grant.numberKUS-11-009-21
dc.identifier.eid2-s2.0-84942163232


This item appears in the following Collection(s)

Show simple item record