• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Leonard, J. T. cc
    Cohen, D. A.
    Yonkee, B. P.
    Farrell, R. M.
    DenBaars, S. P.
    Speck, J. S.
    Nakamura, S.
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/673073
    
    Metadata
    Show full item record
    Abstract
    We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (∼90% at 405 nm) and low resistivity (∼2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.
    Citation
    Leonard, J. T., Cohen, D. A., Yonkee, B. P., Farrell, R. M., DenBaars, S. P., Speck, J. S., & Nakamura, S. (2015). Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts. Journal of Applied Physics, 118(14), 145304. doi:10.1063/1.4931883
    Sponsors
    The authors would like to thank Mitsubishi Chemical Corporation for providing high-quality free-standing m-plane GaN substrates, Tony Bosch at the UCSB Nanofabrication facility for e-beam system support, Nina Hong at J. Woollam for ellipsometer modeling expertise, and Daniel F. Feezell at the University of New Mexico for general discussions on VCSELs. This work was funded in part by the King Abdulaziz City for Science and Technology (KACST) Technology Innovations Center (TIC) program, and the Solid State Lighting and Energy Electronics Center (SSLEEC) at the University of California, Santa Barbara (UCSB). Partial funding for this work came from Professor Boon S. Ooi at King Abdullah University of Science and Technology (KAUST), through his participation in the KACST-TIC program. A portion of this work was done in the UCSB nanofabrication facility, with support from the NSF NNIN network (ECS-03357650), as well as the UCSB Materials Research Laboratory (MRL), which is supported by the NSF MRSEC program (DMR-1121053).
    Publisher
    AMER INST PHYSICS
    Journal
    JOURNAL OF APPLIED PHYSICS
    DOI
    10.1063/1.4931883
    Additional Links
    http://aip.scitation.org/doi/10.1063/1.4931883
    ae974a485f413a2113503eed53cd6c53
    10.1063/1.4931883
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.