• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Tailoring Pore Size of Graded Mesoporous Block Copolymer Membranes: Moving from Ultrafiltration toward Nanofiltration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Gu, Yibei
    Wiesner, Ulrich
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/673038
    
    Metadata
    Show full item record
    Abstract
    Tailoring pore size of ultrafiltration membranes all the way down toward the nanofiltration regime in a predictable manner from molecular design principles is highly desirable. Here we present a way to achieve this in surface separation layers of nonsolvent induced phase separation (NIPS) derived graded block copolymer (BCP) membranes by means of an organic additive. Glycerol, a nontoxic organic molecule, is incorporated at varying amounts into poly(isoprene-b-styrene-b-4-vinylpyridine) (ISV) triblock terpolymer casting solutions. Employing scanning electron microscopy image analysis and solute rejection tests on resulting membranes, the relationship between the amount of additives and membrane performance (permeability, selectivity) is established. Pore size increases from 23 to 48 nm are achieved by moving from membranes cast from pure ISV solutions to those cast from up to 40% weight (relative to ISV) glycerol containing solutions. It is then demonstrated how a combination of additive driven pore expansion in conjunction with P4VP chain stretching via charge repulsion can be used to reduce pore sizes down to 5 nm under acidic (pH 3.6) conditions. This provides a path to move from ultrafiltration toward nanofiltration applications for asymmetric BCP membranes without compromising membrane mechanical properties. It also enables production of advanced membranes with wide tunability, low cost, and high performance.
    Citation
    Gu, Y., & Wiesner, U. (2015). Tailoring Pore Size of Graded Mesoporous Block Copolymer Membranes: Moving from Ultrafiltration toward Nanofiltration. Macromolecules, 48(17), 6153–6159. doi:10.1021/acs.macromol.5b01296
    Sponsors
    This work was funded by the National Science Foundation (DMR-1409105). Portions of this research were carried out at the KAUST-Cornell Center for Energy and Sustainability. This work made use of the Integrated Advanced Microscopy Facilities and Polymer Characterization Facility of the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program (DMR 1120296). The authors acknowledge R. K. Singh, Materials Science and Engineering, Cornell University, for conducting partial membrane performance tests, and S. K. Giri, Soil and Water Lab in Cornell University, for measuring PEO concentrations using a total carbon analyzer.
    Publisher
    American Chemical Society (ACS)
    Journal
    MACROMOLECULES
    DOI
    10.1021/acs.macromol.5b01296
    Additional Links
    https://pubs.acs.org/doi/10.1021/acs.macromol.5b01296
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.macromol.5b01296
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.