Use of Machine Learning-Based Software for the Screening of Thyroid Cytopathology Whole Slide Images.
Name:
10.5858_arpa.2020-0712-oa.pdf
Size:
1.211Mb
Format:
PDF
Description:
Accepted manuscript
Type
ArticleAuthors
Dov, DavidKovalsky, Shahar Z
Feng, Qizhang
Assaad, Serge
Cohen, Jonathan
Bell, Jonathan
Henao, Ricardo

Carin, Lawrence

Range, Danielle Elliott
KAUST Department
Office of the VPAcademic Affairs
Date
2021-10-20Online Publication Date
2021-10-20Print Publication Date
2022-07-01Permanent link to this record
http://hdl.handle.net/10754/672961
Metadata
Show full item recordAbstract
The use of whole slide images (WSIs) in diagnostic pathology presents special challenges for the cytopathologist. Informative areas on a direct smear from a thyroid fine-needle aspiration biopsy (FNAB) smear may be spread across a large area comprising blood and dead space. Manually navigating through these areas makes screening and evaluation of FNA smears on a digital platform time-consuming and laborious. We designed a machine learning algorithm that can identify regions of interest (ROIs) on thyroid fine-needle aspiration biopsy WSIs. To evaluate the ability of the machine learning algorithm and screening software to identify and screen for a subset of informative ROIs on a thyroid FNA WSI that can be used for final diagnosis. A representative slide from each of 109 consecutive thyroid fine-needle aspiration biopsies was scanned. A cytopathologist reviewed each WSI and recorded a diagnosis. The machine learning algorithm screened and selected a subset of 100 ROIs from each WSI to present as an image gallery to the same cytopathologist after a washout period of 117 days. Concordance between the diagnoses using WSIs and those using the machine learning algorithm-generated ROI image gallery was evaluated using pairwise weighted κ statistics. Almost perfect concordance was seen between the 2 methods with a κ score of 0.924. Our results show the potential of the screening software as an effective screening tool with the potential to reduce cytopathologist workloads.Citation
Dov, D., Kovalsky, S. Z., Feng, Q., Assaad, S., Cohen, J., Bell, J., … Range, D. E. (2021). Use of Machine Learning–Based Software for the Screening of Thyroid Cytopathology Whole Slide Images. Archives of Pathology & Laboratory Medicine. doi:10.5858/arpa.2020-0712-oaPubMed ID
34669924Additional Links
https://meridian.allenpress.com/aplm/article/doi/10.5858/arpa.2020-0712-OA/472362/Use-of-Machine-Learning-Based-Software-for-theae974a485f413a2113503eed53cd6c53
10.5858/arpa.2020-0712-oa
Scopus Count
Collections
ArticlesRelated articles
- Application of a machine learning algorithm to predict malignancy in thyroid cytopathology.
- Authors: Elliott Range DD, Dov D, Kovalsky SZ, Henao R, Carin L, Cohen J
- Issue date: 2020 Apr
- Assessment of malignancy for atypia of undetermined significance in thyroid fine-needle aspiration biopsy evaluated by whole-slide image analysis.
- Authors: Collins BT, Collins LE
- Issue date: 2013 Jun
- Direct Gene Expression Profile Prediction for Uveal Melanoma from Digital Cytopathology Images via Deep Learning and Salient Image Region Identification.
- Authors: Liu TYA, Chen H, Gomez C, Correa ZM, Unberath M
- Issue date: 2023 Mar
- Screening adequacy of unstained thyroid fine needle aspiration samples using a deep learning-based classifier.
- Authors: Jang J, Kim YH, Westgate B, Zong Y, Hallinan C, Akalin A, Lee K
- Issue date: 2023 Aug 19
- The Role of Telecytology in the Primary Diagnosis of Thyroid Fine-Needle Aspiration Specimens.
- Authors: Canberk S, Behzatoglu K, Caliskan CK, Gelmez S, Kayhan KC, Aydemir SF, Akbas M, Yıldız I, Veiga R, Alrefae N, Ince U, Schmitt FC
- Issue date: 2020