• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    1.606Mb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Csordás, Róbert
    Irie, Kazuki
    Schmidhuber, Jürgen
    KAUST Department
    King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
    Date
    2021-10-14
    Permanent link to this record
    http://hdl.handle.net/10754/672918
    
    Metadata
    Show full item record
    Abstract
    Despite successes across a broad range of applications, Transformers have limited success in systematic generalization. The situation is especially frustrating in the case of algorithmic tasks, where they often fail to find intuitive solutions that route relevant information to the right node/operation at the right time in the grid represented by Transformer columns. To facilitate the learning of useful control flow, we propose two modifications to the Transformer architecture, copy gate and geometric attention. Our novel Neural Data Router (NDR) achieves 100% length generalization accuracy on the classic compositional table lookup task, as well as near-perfect accuracy on the simple arithmetic task and a new variant of ListOps testing for generalization across computational depth. NDR's attention and gating patterns tend to be interpretable as an intuitive form of neural routing. Our code is public.
    Sponsors
    We thank Imanol Schlag and Sjoerd van Steenkiste for helpful discussions and suggestions on an earlier version of the manuscript. This research was partially funded by ERC Advanced grant no: 742870, project AlgoRNN, and by Swiss National Science Foundation grant no: 200021 192356, project NEUSYM. We are thankful for hardware donations from NVIDIA & IBM. The resources usedfor the project were partially provided by Swiss National Supercomputing Centre (CSCS) project s1023.
    Publisher
    arXiv
    arXiv
    2110.07732
    Additional Links
    https://arxiv.org/pdf/2110.07732.pdf
    Collections
    Preprints

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.