• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Asymmetric Signaling: A New Dimension of Interference Management in Hardware Impaired Communication Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Final Thesis.pdf
    Size:
    4.810Mb
    Format:
    PDF
    Description:
    Final Thesis
    Download
    Type
    Dissertation
    Authors
    Javed, Sidrah cc
    Advisors
    Alouini, Mohamed-Slim cc
    Committee members
    Shihada, Basem cc
    Eltawil, Ahmed cc
    Laleg-Kirati, Taous-Meriem cc
    Dobre, Octavia A.
    Program
    Electrical and Computer Engineering
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2021-10
    Permanent link to this record
    http://hdl.handle.net/10754/672888
    
    Metadata
    Show full item record
    Abstract
    Hardware impairments (HWIs) impose a huge challenge on modern wireless commu- nication systems owing to the characteristics like compactness, least complexity, cost ef- fectiveness and high energy efficiency. Numerous techniques are implemented to minimize the detrimental effects of these HWIs ,however, the residual HWIs may still appear as an additive distortion, multiplicative interference, or an aggregate of both. Numerous studies have commenced efforts to model one or the other forms of hardware impairments in the ra- dio frequency (RF) transceivers. Many presented the widely linear model for in-phase and quadrature imbalance (IQI) but failed to recognize the impropriety induced in the system because of the self-interfering signals. Therefore, we have presented not only a rigorous ag- gregate impairment model along with its complete impropriety statistical characterization but also the appropriate performance analysis to quantify their degradation effects. Lat- est advances have endorsed the superiority of incorporating more generalized impropriety phenomenon as opposed to conventional propriety. In this backdrop, we propose the improper Gaussian signaling (IGS) to mitigate the drastic impact of HWIs and improve the system performance in terms of achievable rate and outage probability. Recent contributions have advocated the employment of IGS over traditional proper Gaussian signaling (PGS) in various interference limited scenarios even in the absence of any improper noise/interference. It is pertaining to the additional degree of freedom (DoF) offered by IGS, which can be optimized to reap maximum benefits. This reduced-entropy signaling is the preferred choice to pose minimal interference to a legitimate network yielding another mechanism to tackle undesired interference. Evidently, the incorporation of both inherent and induced impropriety characteristics is critical for effective utilization. Most of the recent research revolves around the theoretical analysis and advantages of improper signaling with minimal focus on its practical realization. We bridge this gap by adopting and optimizing asymmetric signaling (AS) which is the finite discrete implemen- tation of the improper signaling. We propose the design of both structural and stochastic shaping to realize AS. Structural shaping involves geometric shaping (GS) of the symbol constellation using some rotation and translation matrices. Whereas, stochastic shaping as- signs non-uniform prior probabilities to the symbols. Furthermore, hybrid shaping (HS) is also proposed to reap the gains of both geometric and probabilistic shaping. AS is proven superior to the conventional M-ary symmetric signaling in all of its forms. To this end, probabilistic shaping (PS) demonstrates the best trade-off between the performance en- hancement and added complexity. This research motivates further investigation for the utilization of impropriety concepts in the upcoming generations of wireless communications. It opens new paradigms in inter- ference management and another dimension in the signal space. Besides communications, the impropriety characterization has also revealed numerous applications in the fields of medicine, acoustics, geology, oceanography, economics, bioinformatics, forensics, image processing, computer vision, and power grids.
    Citation
    Javed, S. (2021). Asymmetric Signaling: A New Dimension of Interference Management in Hardware Impaired Communication Systems. KAUST Research Repository. https://doi.org/10.25781/KAUST-I5T5S
    DOI
    10.25781/KAUST-I5T5S
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-I5T5S
    Scopus Count
    Collections
    PhD Dissertations; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.