Type
Conference PaperKAUST Department
Computer, Electrical and Mathematical Science and Engineering (CEMSE) DivisionStatistics Program
Date
2021-10-11Online Publication Date
2021-10-11Print Publication Date
2021-07-21Permanent link to this record
http://hdl.handle.net/10754/672827
Metadata
Show full item recordAbstract
Accurately forecasting solar irradiance is indispensable in optimally managing and designing photovoltaic systems. It enables the efficient integration of photovoltaic systems in the smart grid. This paper introduces an innovative deep attention-driven model for solar irradiance forecasting. Notably, an extended version of the variational autoencoder (VAE) is introduced by amalgamating the desirable characteristics of the bidirectional LSTM (BiLSTM) and attention mechanism with the VAE model. Specifically, the introduced approach enables the conventional VAE’s ability to model temporal dependencies by incorporating BiLSTM at the VAE’s encoder side to better extract and learn temporal dependencies embed on the solar irradiance concentration measurements. In addition, the self-attention mechanism is embedded in the VAE’s encoder side following the BiLSTM to highlight pertinent features. The performance of the proposed model is evaluated through comparisons with the recurrent neural network (RNN), gated recurrent unit (GRU), LSTM, and BiLSTM. Measurements of solar irradiance in the US and Turkey are used to evaluate the investigated models. Results confirm the superior performance of the proposed model for solar irradiance forecasting over the other models (i.e., RNN, GRU, LSTM, and BiLSTM).Citation
Dairi, A., Harrou, F., & Sun, Y. (2021). A deep attention-driven model to forecast solar irradiance. 2021 IEEE 19th International Conference on Industrial Informatics (INDIN). doi:10.1109/indin45523.2021.9557405Publisher
IEEEConference/Event name
2021 IEEE 19th International Conference on Industrial Informatics (INDIN)ISBN
978-1-7281-4396-5Additional Links
https://ieeexplore.ieee.org/document/9557405/https://ieeexplore.ieee.org/document/9557405/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9557405
ae974a485f413a2113503eed53cd6c53
10.1109/INDIN45523.2021.9557405