• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    APPLICATION OF LWD ACOUSTIC DISPERSIVE DATA PROCESSING FOR HIGH-QUALITY SHEAR SLOWNESS LOGS IN SLOW FORMATIONS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Wang, Ruijia
    Halliburton
    Zhao, Jiajun
    Kortam, Taher
    Halliburton
    Halliburton
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2021-05-17
    Online Publication Date
    2021-05-17
    Print Publication Date
    2021-05-17
    Permanent link to this record
    http://hdl.handle.net/10754/672181
    
    Metadata
    Show full item record
    Abstract
    For conventional acoustic monopole sources in a logging-while-drilling (LWD) or wireline environment, shear slowness logs can be hard to obtain, particularly in slow formations where direct refracted shear-wave arrivals are often absent. For LWD dipole sources, formation flexural waves are often coupled with the lowest order of tool flexural waves, so the flexural mode does not approach shear wave slowness at low frequencies. A dispersion correction is required to extract shear slowness from LWD dipole data. Instead, a quadrupole firing, which generates screw waves, is considered the best LWD excitation mode for shear measurement. A fundamental feature of screw waves in an LWD environment is that their non-leaky cutoff frequency slowness is the formation shear slowness. However, slowness data near the cutoff frequency of LWD screw waves are often influenced by noise or the presence of other modes because of low excitation amplitude. To overcome these LWD data processing challenges, we propose a data-driven processing method that uses all useful dispersion responses of existing modes in the frequency domain. The process first generates a differential phase frequency-slowness coherence map and extracts the slowness dispersion vs. frequency. Then, it computes the slowness density log, referring to the intensity of the dispersion response along the slowness axis. Next, an edge-detection method is applied to capture the edge of the first peak associated with shear slowness on the slowness density map. To refine the shear slowness answer, this initial estimate of shear slowness serves as the input to another algorithm that minimizes the misfit between the screw slowness vector and a simplified screw dispersion model. The simplified screw dispersion model consists of a pre-computed base library of theoretical screw dispersion curves and two data-driven parameters. The two data-driven parameters are used by the measured data to stretch the base dispersion model in the frequency and slowness axes, respectively, to account for errors generated by alteration, anisotropy, or other parameters not included in the forward modeling. The method can also be applied to flexural waves, where the initial guess of shear slowness is picked from the slowness density map of flexural waves after dispersion-correction processing. This paper shows a case study of borehole flexural and screw waves processing in soft formations. A modified differential-phase frequency-semblance (MDPFS) approach is applied to extract the mode waves' full-frequency dispersion response from measured waveforms. The data-driven shear slowness processing is applied to the dispersion response. Both dipole flexural waves and quadrupole screw waves are processed. A combination of slowness density log from the flexural or screw wave slowness and the dispersion-corrected slowness is used as a QC metric of the final estimated shear. Results show that flexural and screw dispersions are well measured by the LWD sonic tool, even if the shear slowness is as large as 500 s/ft. Shear slowness extracted from flexural waves and screw waves match well with each other and with wireline shear slowness logs, demonstrating that the processing is reliable and robust.
    Citation
    Wang, R., Zhao, J., & Kortam, T. (2021). APPLICATION OF LWD ACOUSTIC DISPERSIVE DATA PROCESSING FOR HIGH-QUALITY SHEAR SLOWNESS LOGS IN SLOW FORMATIONS. SPWLA 62nd Annual Online Symposium Transactions. doi:10.30632/spwla-2021-0117
    Publisher
    Society of Petrophysicists and Well Log Analysts
    DOI
    10.30632/spwla-2021-0117
    Additional Links
    https://www.spwla.org/SPWLA/Publications/Publication_Detail.aspx?iProductCode=SPWLA-2021-0117
    ae974a485f413a2113503eed53cd6c53
    10.30632/spwla-2021-0117
    Scopus Count
    Collections
    Conference Papers; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.