• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Limiting Aspects of Nonconvex TV theta Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hintermueller, Michael
    Valkonen, Tuomo
    Wu, Tao
    KAUST Grant Number
    KUK-I1-007-43
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/672180
    
    Metadata
    Show full item record
    Abstract
    Recently, nonconvex regularization models have been introduced in order to provide a better prior for gradient distributions in real images. They are based on using concave energies φ in the total variation–type functional TVφ (u):= ∫φ(|∇u(x)|) dx. In this paper, it is demonstrated that for typical choices of φ, functionals of this type pose several difficulties when extended to the entire space of functions of bounded variation, BV(Ω). In particular, if φ(t) = tq for q ∈ (0, 1), and TVφis defined directly for piecewise constant functions and extended via weak* lower semicontinuous envelopes to BV(Ω), then it still holds that TVφ (u) = ∞ for u not piecewise constant. If, on the other hand, TVφ is defined analogously via continuously differentiable functions, then TVφ ≡ 0 (!). We study a way to remedy the models through additional multiscale regularization and area strict convergence, provided that the energy φ(t) = tq is linearized for high values. The fact that such energies actually better match reality and improve reconstructions is demonstrated by statistics and numerical experiments.
    Citation
    Hintermüller, M., Valkonen, T., & Wu, T. (2015). Limiting Aspects of Nonconvex ${TV}^{\phi}$ Models. SIAM Journal on Imaging Sciences, 8(4), 2581–2621. doi:10.1137/141001457
    Sponsors
    A large part of this work was done while the corresponding author was at the Center for Mathematical Modeling, Escuela Polit´ecnica Nacional, Quito, Ecuador, where his work was supported by a Prometeo scholarship of the Senescyt. In Cambridge, this author was supported by the King Abdullah University of Science and Technology (KAUST) Award KUK-I1-007-43 and the EPSRC first grant EP/J009539/1“Sparse & Higher-order Image Restoration.”
    Publisher
    Society for Industrial & Applied Mathematics (SIAM)
    Journal
    SIAM JOURNAL ON IMAGING SCIENCES
    DOI
    10.1137/141001457
    arXiv
    1412.7572
    Additional Links
    http://epubs.siam.org/doi/10.1137/141001457
    ae974a485f413a2113503eed53cd6c53
    10.1137/141001457
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.