On the equivalence of different adaptive batch size selection strategies for stochastic gradient descent methods
Type
PreprintKAUST Department
Applied Mathematics and Computational Science ProgramComputer, Electrical and Mathematical Science and Engineering (CEMSE) Division
Stochastic Numerics Research Group
KAUST Grant Number
URF/1/2281 − 01 − 01URF/1/2584 − 01 − 01
Date
2021-09-22Permanent link to this record
http://hdl.handle.net/10754/672107