Modeling and simulation of turbulent polydisperse gas-liquid systems via the generalized population balance equation
Type
ArticleDate
2014Permanent link to this record
http://hdl.handle.net/10754/671364
Metadata
Show full item recordAbstract
This article reviews the most critical issues in the simulation of turbulent polydisperse gas-liquid systems. Here the discussion is limited to bubbly flows, where the gas appears in the form of separate individual bubbles. First, the governing equations are presented with particular focus on the generalized population balance equation (GPBE). Then, the mesoscale models defining the evolution of the gas-liquid system (e.g., interface forces, mass transfer, coalescence, and breakup) are introduced and critically discussed. Particular attention is devoted to the choice of the drag model to properly simulate dense gasliquid systems in the presence of microscale turbulence. Finally, the different solution methods, namely, Lagrangian and Eulerian, are presented and discussed. The link between mixture, two- and multi-fluid models, and the GPBE is also analyzed. Eventually, the different methodologies to account for polydispersity, with focus on Lagrangian or direct simulation Monte Carlo methods and Eulerian quadrature-based moment methods, are also presented. A number of practical examples are discussed and the review is concluded by presenting the advantages and disadvantages of the different methods and the corresponding computational costs. © 2014 Walter de Gruyter GmbH, Berlin/Boston.Citation
Buffo, A., & Marchisio, D. L. (2014). Modeling and simulation of turbulent polydisperse gas-liquid systems via the generalized population balance equation. Reviews in Chemical Engineering, 30(1). doi:10.1515/revce-2013-0015Sponsors
This work is the result of the research carried out at DISAT, Politecnico di Torino on gas-liquid systems over the past decade. This research was financially supported by ENI (Italy) and BASF (Germany). The important contributions of Miriam Petitti (DISAT), Marco Vanni (DISAT), Fabrizio Podenzani (ENI), Peter Renze (BASF), Rodney O. Fox (Iowa State University), Matteo Icardi (KAUST), and Djamel Lakehal and Chidu Narayanan (ASCOMP) are gratefully acknowledged.Publisher
Walter de Gruyter GmbHJournal
REVIEWS IN CHEMICAL ENGINEERINGAdditional Links
https://www.degruyter.com/document/doi/10.1515/revce-2013-0015/htmlae974a485f413a2113503eed53cd6c53
10.1515/revce-2013-0015