• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Study of water direct injection on knock control and combustion process of a high compression ratio GDI engine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhang, Qirui
    Pei, Yiqiang
    An, Yanzhao
    Peng, Zhong
    Qin, Jing
    Shi, Hao cc
    Zhang, Bin
    Zhang, Zhiyong
    Gao, Dingwei
    KAUST Department
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2021-08-19
    Online Publication Date
    2021-08-19
    Print Publication Date
    2021-12
    Embargo End Date
    2023-08-19
    Submitted Date
    2021-05-11
    Permanent link to this record
    http://hdl.handle.net/10754/671168
    
    Metadata
    Show full item record
    Abstract
    To improve the engine thermal efficiency and reduce emissions, a single-cylinder gasoline direct injection (GDI) engine was installed with a water direct injection (WDI) system in the current research. The effects of water injection ratio (WIR) and water injection timing (WIT) on engine combustion, knock intensity, and emissions were studied. The maximum braking torques (MBT), and the corresponding spark timings (ST) with different WDI strategies were investigated. The results showed that the WDI could effectively inhibit engine knock through increased WIR or delayed WIT, while the indicated thermal efficiency (ITE) was reduced. With increasing WIR, the decreased in-cylinder temperature led to reduced NOx emission but increased HC emission. CO emission gradually decreased but increased again when WIR was over 40%. With WIR of 50% at test basic ST and MBT, NOx emission reduced by 48% and 18.8%, HC emission increased by 7.3% and 36.1%​​, but the ITE decreased by 1.3% and increased by 3% respectively. With the delay of WIT at test basic ST conditions, ITE and the emissions of NOx, CO, and HC decreased, CA50 gradually retarded, the exhaust temperature steadily increased. IMEP increased by 9.5%, and ITE increased by 3.5% at WIT of −60°CA ATDC when ST was optimized to MBT. NOx emission of basic ST and MBT decreased by 34.4% and 11.5% compared with the basic conditions, respectively. The optimized trade-off between ITE and emission was achieved with the WIT of −100°CA ATDC and WIR of 50%. The ITE and IMEP under WDI conditions can be further improved at the sacrifice of emissions with the optimized earlier combustion phase, but the increased range depended on knock suppression. The correlation between WIR and knock was more significant than that of WIT, indicating more robust knock suppression.
    Citation
    Zhang, Q., Pei, Y., An, Y., Peng, Z., Qin, J., Shi, H., … Gao, D. (2021). Study of water direct injection on knock control and combustion process of a high compression ratio GDI engine. Fuel, 306, 121631. doi:10.1016/j.fuel.2021.121631
    Sponsors
    This work was financially supported by the National Natural Science Foundation of China (Grant No. 51776024) and technically supported by the Great Wall Motor Co. Ltd (GWM). The authors appreciate the experimental support from Dr. Zhiyong Zhang and Dr. Ming Li in the GWM engine lab during the experiment.
    Publisher
    Elsevier BV
    Journal
    Fuel
    DOI
    10.1016/j.fuel.2021.121631
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S001623612101512X
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.fuel.2021.121631
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.