Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification
dc.contributor.author | Rashid, Reem B. | |
dc.contributor.author | du, weiyuan | |
dc.contributor.author | Griggs, Sophie | |
dc.contributor.author | Maria, Iuliana P. | |
dc.contributor.author | McCulloch, Iain | |
dc.contributor.author | Rivnay, Jonathan | |
dc.date.accessioned | 2021-09-09T08:49:20Z | |
dc.date.available | 2021-09-09T08:49:20Z | |
dc.date.issued | 2021-09-08 | |
dc.date.submitted | 2021-02-16 | |
dc.identifier.citation | Rashid, R. B., Du, W., Griggs, S., Maria, I. P., McCulloch, I., & Rivnay, J. (2021). Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification. Science Advances, 7(37). doi:10.1126/sciadv.abh1055 | |
dc.identifier.issn | 2375-2548 | |
dc.identifier.doi | 10.1126/sciadv.abh1055 | |
dc.identifier.uri | http://hdl.handle.net/10754/671137 | |
dc.description.abstract | On-site signal amplification for bioelectronic sensing is a desirable approach to improving recorded signal quality and to reducing the burden on signal transmission and back-end electronics. While organic electrochemical transistors (OECTs) have been used as local transducers of bioelectronic signals, their current output presents challenges for implementation. OECT-based circuits offer new opportunities for high-performance signal processing. In this work, we introduce an active sensing node based on cofacial vertical OECTs forming an ambipolar complementary inverter. The inverter, which shows a voltage gain of 28, is composed of two OECTs on opposite side walls of a single active area, resulting in a footprint identical to a planar OECT. The inverter is used as an analog voltage preamplifier for recording electrocardiogram signals when biased at the input voltage corresponding to peak gain. We further demonstrate compatibility with nontraditional fabrication methods with potential benefits for rapid prototyping and large-area printed electronics. | |
dc.description.sponsorship | We acknowledge financial support from King Abdullah University of Science and Technology Office of Sponsored Research (OSR) under awards nos. OSR-2018-CARF/CCF-3079 and OSR- 2019-CRG8-4086. This work used Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is partially supported by Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Science and Engineering Centers (MRSEC; DMR-1720139), the State of Illinois, and Northwestern University. This work made use of the Keck-II and EPIC facilities of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN | |
dc.publisher | American Association for the Advancement of Science (AAAS) | |
dc.relation.url | https://www.science.org/doi/10.1126/sciadv.abh1055 | |
dc.rights | The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification | |
dc.type | Article | |
dc.contributor.department | KAUST Solar Center (KSC) | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.contributor.department | Chemical Science Program | |
dc.identifier.journal | Science Advances | |
dc.eprint.version | Publisher's Version/PDF | |
dc.contributor.institution | Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA. | |
dc.contributor.institution | Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA. | |
dc.contributor.institution | Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK. | |
dc.identifier.volume | 7 | |
dc.identifier.issue | 37 | |
kaust.person | Du, Weiyuan | |
kaust.person | McCulloch, Iain | |
kaust.grant.number | OSR-2018-CARF/CCF-3079 | |
kaust.grant.number | OSR- 2019-CRG8-4086 | |
dc.date.accepted | 2021-07-20 | |
refterms.dateFOA | 2021-09-09T08:51:24Z | |
kaust.acknowledged.supportUnit | OSR | |
dc.date.published-online | 2021-09-08 | |
dc.date.published-print | 2021-09-10 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Chemical Science Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/chemical-science/Pages/home.aspx -
KAUST Solar Center (KSC)